
Interval and affine
computation

Iwona Skalna
AGH University of Science and Technology

Outline
+Floating-point numbers

+Rounding errors

+ Interval computation

+Affine and revised affine forms

+Practical applications

Floating-point numbers
+ Floating-point (FP) numbers are important because they are ubiquitous in scientific

computing. A floating-point number is represented as
𝒆

𝟎 𝟏 𝟐 𝒑ି𝟏

Where is the sign, is called the base, e is the exponent, p is the precision, and
଴ ଵ ଶ ௣ିଵ part is called the significand (mantissa, fraction, coefficient).

The significand is normalized to belong to the interval

+ Why „floating point”? Because the exponent logically determines where the decimal point
is placed within (or even outside) the significand.

+ IEEE 754 standard requires =2, p=24 for single precision and p=53 for double precision.

+ Thanks to the use of =2, only 23 bits and 52 bits must be stored for, respectively, single
and double precision, since all normalized numbers starts with 1, so no need to store it.

Floating-point numbers
Floating-point numbers do not behave as do the real numbers encountered in mathematics:

+ There is only a finite set of floating-point numbers, since computer representation
must be finite.

+ The set of floating-point numbers does not form a field under the usual set of
arithmetic operations.

+ Some common rules of real arithmetic are not always valid when applied to floating-
point operations.

Floating-point arithmetic

Let a, b and c be floating-point numbers. Then

+ may not be a floating-point number
+ 𝑎 + 𝑏 may not always equal 𝑎 ⊕ 𝑏

+ Similarly for the operations −, × and /
+ Recall that floating-point numbers do not form a field

+ may not be equal to (lack of associativity)
+ Similarly for other elementary operation

+ may not be equal to (lack of distributivity)

+ may not be equal to a.

Floating-point numbers
Consequences:

+ Since there is only a finite set of floating-point numbers, there are rational numbers
which are not floating-point numbers (transcendentals such as , e, cannot be
represented exactly by a floating-point value regardless of format or precision).

+ The decimal equivalent of any finite floating-point value contains a finite number of
non-zero digits.

+ Floating-point computation is not guaranteed because of rounding errors => the
result that is not representable as machine number is rounded.

Rounding and truncation errors

What will be the result in double precision?

253+1−253 1 (why?)

253+1 = ?

A = 253, B = 1

௘௫௣஺ ଵ

ଵ

ଶ

ଶ

ହଶ

ହଶ
௘௫௣஻ ଵ

ଵ

ଶ

ଶ

ହଶ

ହଶ

63 52 0

exponent (11 bit) significand (52 bit)
sign

Rounding and truncation errors
௘௫௣஺ ௔భ

ଶభ

௔మ

ଶమ

௔ఱమ

ଶఱమ
௘௫௣஻ ௕భ

ଶభ

௕మ

ଶమ

௕ఱమ

ଶఱమ

The first thing to do is to make the exponents of A and B agree. The respective term is
divided by the difference xB = expA – expB (expA > expB).

௘௫௣஺ ௔భ

ଶభ

௔మ

ଶమ

௔ఱమ

ଶఱమ
௘௫௣஺

ଵା
್భ
మభା

್మ
మమା⋯ା

್ఱమ
మఱమ

ଶೣಳ

௘௫௣஺ ଵ

ଵ

ଶ

ଶ

ହଶ

ହଶ ௫஻

ଵ

ଵା௫஻

ଶ

ଶା௫

ହଶ

ହଶା

In the cosidered case xB = 53, so all terms after ௔ఱమ

ଶఱమ will be neglected and the result will be
௘௫௣஺ ௔భ

ଶభ

௔మ

ଶమ

௔ఱమ

ଶఱమ .

Remedy: transform 253+1-253 => 253-253+1 = 1.

Rounding and truncation errors
Consider the following quadratic equation:

ଶ

The smaller (per modulus) root is ଵ
ଶ .

In double precision floating-point arithmetic (binary64),
if p≥108, then 1/p2 < 2-53 and 1+p2=p2(1+1/p2)=p2.

So, ଶ , whereas the correct value is ଵ
ିଽ

Remedy: transform ଶ
ଶ => ଶ

ଵ

ଶ௣
(correct!)

Rounding and truncation errors
Does increasing accuracy can help?

6 2 2 2 6 4 8 𝑏,

.

single precision f ≈ 1.172603...

double precision f ≈ 1.1726039400531...

quadruple precision f ≈ 1.172603940053178...

correct value f = −0.827386...= a/2b − 2

Remedy: transform => challenge

Rounding and truncation errors
The Patriot Missile Failure
On February 25, 1991, during the Gulf War, an American Patriot Missile battery in Dhahran,
Saudi Arabia, failed to track and intercept an incoming Iraqi Scud missile. The Scud struck
American Army barracks, killing 28 soldiers and injuring around 100 other people.

+ An investigation discovered a bug in the Patriot’s tracking software that caused the system’s
internal clock to drift gradually from the real time.

+ The time was stored as an integer number in a 24-bit register with an accuracy of 1/10 of a
second. This resulted in some portion of the time value being lost as it incremented each 0.1
seconds.

+ To calculate a target’s location, the data had to be cast to real numbers
1/10 is 1/24+1/25+1/28+1/29+1/212+1/213+… In other words, binary expansion of the value
1/10 is 0.0001100110011001100110011001100…. That’s why this value, stored in a 24-bit
register, was rounded to 0.00011001100110011001100, resulting in a precision error of
0.0000000000000000000000011001100… in binary format, or about 0.000000095 in decimal
format. During 100 hours of continuous operation, this error would build up to
0.000000095100606010=0.34 seconds.

+ An R-17’s velocity is 1676 m/s, so it covers over half a kilometer in 0.34 seconds, which is
more than enough for the missile to slip past the Patriot’s intercept range. The funny thing is
that this time-calculation bug was fixed only in some parts of the software, but not in all of it.

Correct

After 8 hours

Incorrect

Alternative representation

+ Consider a real number :

// not a machine number

+ We can substitute x with a pair of machine numbers (very rough representation)

// both 5.74 and 6 are machine numbers

+ Floating-point representation of is:
0 10000000001 0111100110011001100110011001100110011001100110011001|100 …
0 10000000001 0111100110011001100110011001100110011001100110011001 (round down)

0 10000000001 0111100110011001100110011001100110011001100110011010 (round up)

Tight interval [5.8999999999999995, 5.9000000000000004] that represents .

Why interval arithmetic is so useful?
+ Measurement errors – measured value  accuracy of a measurement tool.

+ Dynamical model parameters – the distribution probability is not known, but the range for the
parameters can be given.

+ Truncation errors – for example when approximating a function with Taylor series or when
approximating derivatives with finite differences.

+ Sensitivity analysis – examining the influence of parameter changes on the system behavior.

+ Infinite numer of states – impossible to process them separately.

Intervals
The main idea is to represent an unknown value with a known absolute error as
a closed and bounded interval

.

It is guaranteed that is „somewhere” between the lower bound and the upper bound .

On the other hand, given an interval , its midpoint
௖ ,

can be tread as approximation of unknown value and its radius
∆ ,

can be treated as an approximation error:
௖ ∆.

The set of all intervals is denoted as IR.

avoid some of FP drawbacks, but have some other problems

Interval arithmetic (IA)
Given the interval values

and ,

the elementary operations are defined as

,

where hull S = [inf S, sup S] (for S).

Elementary arithmetic operations on intervals are inclusion isotone, i.e.,
ᇱ ᇱ ᇱ ᇱ ,

Interval arithmetic
Endpoint form of elementary operations (Moore):

()

()

Interval arithmetic
The algebraic system of interval arithmetic is only an abelian monoid under both addition
and multiplication, additive and multiplicative inverses exist only for intervals of zero radius.

Interval arithmetic operations only preserve some of the algebraic laws valid for real
numbers. In particular, the following laws hold true for arbitrary intervals , , and :

(commutativity)

(associativity)

(neutral element)

Interval arithmetic
The distributivity and cancellation are present in the interval arithmetic in a weaker form as
sub-distributivity and sub-cancellation, respectively.

For arbitrary intervals , , , the following holds true:
+ sub-distributivity:

+ sub-cancellation:

Interval arithmetic
Example. Let and . Then

Interval arithmetic
Example. Let , and .

Sub-distributivity

Sub-cancellation

Computer interval arithmetic
In computer interval arithmetic, computations are performed on intervals where
the lower bound and the upper are machine numbers.

In order to to guarantee that the obtained interval solution is rigorous, i.e., the unknown
exact result is included in the resulting interval, the so-called outward rounding procedure
is used:

+ the lower bound of the resulting interval must be rounded downward (towards -)

+ the upper bound of the resulting interval must be rounded upward (towards +)

The outward rounding is optimal when

are machine numbers .

Computer interval arithmetic
Endpoint form of elementary operations (Moore) in computer arithmetic is as follows:

𝒙 + 𝒚 = ∇ 𝑥 + 𝑦 , ∆ 𝑥̅ + 𝑦ത

𝒙 − 𝒚 = ∇ 𝑥 − 𝑦ത , ∆ 𝑥̅ − 𝑦

𝒙 ∗ 𝒚 = min ∇ 𝑥 ∗ 𝑦 , ∇ 𝑥 ∗ 𝑦ത , ∇ 𝑥̅ ∗ 𝑦 , ∇ 𝑥̅ ∗ 𝑦ത , max ∆ 𝑥 ∗ 𝑦 , ∆ 𝑥 ∗ 𝑦ത , ∆ 𝑥̅ ∗ 𝑦 , ∆ 𝑥̅ ∗ 𝑦ത

𝟏/ 𝒚 = ∇ 1/𝑦ത , ∆ 1/𝑦 (0 ∉ 𝒚)

𝒙/ 𝒚 = 𝒙 ∗
𝟏

𝒚
(0 ∉ 𝒚)

where denote downward rounding and denote upward rounding.

Computer interval arithmetic
The following examples illustrate interval operations and outward rounding. The base is
B=10 and the length of significand is L=2.

 , rounded:]

not defined since 

, rounded:

, rounded:

Outward rounding
In 32-bit architecture, the FPU (floating-point unit) 16-bit control word (CW) allows to set,
among others, the rounding mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X RC PC PM UM OM ZM DM IM
In

fin
ity

 c
on

tr
ol

Ro
un

di
ng

 c
on

tr
ol

Pr
ec

isi
on

 c
on

tr
ol

Pr
ec

isi
on

U
nd

er
flo

w

O
ve

rf
lo

w

Ze
ro

 d
iv

id
e

D
en

or
m

al
 O

pe
ra

nd

In
va

lid
 O

pe
ra

nd

Exception masks

Outward rounding
RC are rounding mode bits; they can be set as follows:

00 = rounding to nearest or to even if equally distant (default)
01 = rounding down (toward -infinity)
10 = rounding up (toward +infinity)
11 = truncation (toward 0)

Exemplary assembler implementation (Microsof VS):

static unsigned short CRoundDown = 0x0400;

static unsigned short CRoundUp = 0x0800;

static unsigned short CRoundNear = 0xF3FF;

static unsigned short Ctrunc = 0x0C00;

void RoundDown() {
__asm{ fstcw oldcw
// to ensure the storage instruction is completed
fwait
mov ax, oldcw
// clears only the RC bits, leaving all other bits unchanged
// not necessary here because both bits will be set
and ax, CRoundNear
// this will set both bits of the RC field to the truncating mode
// without affecting any of the other field's bits
or ax, CRoundUp
mov newcw, ax
// load the modified Control Word
fldcw newcw

}

Range bounding
The problem of range bounding is often called the main problem of interval computation.

The problem of computing the range of a function over a given interval (or
a box in general case) can be formalized as follows: given a real-valued function

௡
௙ and a box , we are interested in the range

௙ .

If is continuous, then is a closed interval.

For many classes of functions, computing is an NP-hard problem.

Therefore, in practical situations, we often ask for an interval enclosure for , i.e., an
interval such that .

The tightest possible interval enclosure is simply . If function is monotone, the
hull can be obtained by computing the values of the function at respective endpoints.

Range bounding
If a real-valued function is represented by an arithmetic expression f, then the interval
enclosure can be obtained by a (straightforward) interval evaluation of f over .

The interval evaluation relies on replacing the real variables by the corresponding interval
variables and the real arithmetic operations by the corresponding interval operations.

Interval valued function ௡ induced by expression f, is said to be the
natural interval extension of .

If the interval evaluation is defined, then .

If contains a point ௙ , then the interval evaluation is not defined.

Range bounding
Sometimes, the interval evaluation is not defined even if ௙…

Example. Consider a real-valued function 𝑓 𝑥 = 1/ 𝑥ଶ + 2 . The function is defined for all real
numbers and takes values from the interval (0,1].

As it is well known 𝑎௡ = 𝑎 ∗ 𝑎 ⋯ ∗ 𝑎
௡ି௧௜௠௘௦

, so we have

𝒇 −2,2 =
1

−2,2 ∗ −2,2 + 2
=

1

−4,4 + 2
=

1

−2,6

which means that 𝒇 −2,2 is not defined for 𝒙 = −2,2 ,
(the division cannot be performed since the denominator
contains 0) despite −2,2 ⊂ 𝐷 = ℛ.

Having properly defined the square function we will obtain:

𝒇 −2,2 =
1

−2,2 ଶ + 2
=

1

0,4 + 2
=

1

2,6
=

1

6
,
1

2

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
@(x)(1./(x.2+2))

Range bounding
…and the result much depends on the syntactic formulation of the expression for . The
difference between exact range and the computed range is called the overestimation.

Example. Consider a real-valued function ଶ . The function is defined for
all real numbers.

Let Then

We can write in the following two equivalent forms:

ଶ

Then

(50% overestimation)

ଶ ଶ (hull)

0.5 1 1.5 2

-1

-0.5

0.5

1

1.5

2

Function @(x)((x. 2-2.*x+1))

f([0,1])f([0,1])

g([0,1])g([0,1])

h([0,1])h([0,1])

Range bounding
The overestimation can be arbitrarily large.

Example. Consider a real-valued function ଶ . The function is defined for
all real numbers and takes value from (0,4/3].

However, for intervals , the value

ଶ ଶ

If then the upper bound of the resulting interval
tends to +.
This huge overestimation is caused by multiple occurrences of variable 𝑥
in the considered function. Subexpressions 1 − 𝑥 and 𝑥ଶ are calculated
as if they were independent, i.e., 𝑥 is treated as a different variable in each
occurrence. Therefore, the range of function f is calculated from the expression
𝑓 𝑥ଵ, 𝑥ଶ = 1/ 1 − 𝑥ଵ + 𝑥ଶ

ଶ over box 0, 𝑡 × 0, 𝑡 .

We can rewrite 𝑓 into an equivalent form as 𝑔 𝑥 = 4/ 3 + (1 − 2 ∗ 𝑥)ଶ . Then 𝒈 𝑥 = [0,4/3] (hull).

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Funkcja @(x)(1./(1-x+x.2))

Range bounding
The following theorem is one of the most important theorems of interval analysis.
Theorem. (Moore, Neumaier) Let 𝒇 be a natural interval extension of real function 𝑓 represented by the
arithmetic the expression f in which each variable 𝑥௜, (𝑖 = 1, ⋯ , 𝑛) occurs only once. Then, for all 𝒙 ⊆ 𝐷௙

𝒇 𝒙 = hull 𝑅𝑔𝑒 𝑓 𝒙).

Unfortunately, for many expressions, it is difficult to rearrange them so that the assumptions of the above
theorem are fulfilled.

The problem of multiple occurrence of variables in an expression is known as the
dependency problem.

If it is not possible to obtain a single occurrence of each variable, we should at least try to reduce the number of
occurrences of all variables as much as possible.

Symbolic manipulation of arithmetic expressions has proven to be useful in the detection and removal of multiple
occurrences of variables.

Obviously, we can never be sure to obtain the best form of an expression, but even a small reduction in the number
of occurrences of variables will improve the accuracy of the final enclosure.

Range bounding
The natural interval extension is only one of the infinitely many inclusion monotonic interval
extensions of a real function.

If the reduction of the number of occurrences of variables is not satisfactory, some more-
sophisticated interval extensions must be used to reduce the effect of the interval dependency
(and overestimation). Below are mentioned the most known interval extensions:

+ centered form, generalized centered form

+ bi-centered form

+ mean value form

+ Taylor expansion

+ Bernstein expansion

They are useful, but often require automatic differentiation or the underlying formulas are quite
complex.

Other ways to improve the results of interval computation?

Affine arithmetic (AA)
One of the possible ways to handle dependency/overestimation problem of IA is to use
affine arithmetic, which is a model of self-validated numerical computation.

In affine arithmetic an unknown value is represented by an affine form, which is
a 1-degree polynomial

଴ ଵ ଵ ௡ ௡

where the central value ଴ and the partial deviations ௜ are finite floating-point numbers;
the noise symbols (or dummy variables) ௜ are unknown but assumed to vary independently
within the interval .

Each noise symbol ௜ stands for an independent component of the total uncertainty of the
ideal quantity and the corresponding coefficient ௜ gives the magnitude of that
component.

keeps track of first-order correlations between quantities

Affine arithmetic
The sources of uncertainty in an affine form can be divided into:

+ External sources – already present in the input data,
+ Internal sources – due to affine approximations and rounding errors.

The semantics of affine forms is formalized by

The fundamental invariant of affine arithmetic states that, at any instant between AA
operations, there is a single assignment of values from the interval to each of the
noise variables in use that makes the value of every affine form equal to the true value of
the corresponding ideal quantity .

Affine forms Intervals
Every affine form implies the interval for an unknown :

଴ ଴ where ௜
௡
௜ୀଵ is the total deviation.

The interval is the tightest interval that contains all possible values of assuming all ௜

vary independently within the interval .

Conversely, if , then it can be represented by the affine form
௔ା௕

ଶ

௕ି௔

ଶ ௞ ,

where ௞ is a new noise symbol (not present in any previous computation).

Affine forms Intervals
Example. Consider two affine forms

ଵ ଷ ସ

ଵ ଶ ସ

The first form implies the interval , the second one implies the
interval .

Example. Let , , . Then, they can be replaced with the
following affine forms

ଵ

ଶ

ଷ

Affine arithmetic
The key feature of AA is that the same noise symbol ௜ may contribute to the uncertainty of
two or more quantities (inputs, outputs, or intermediate results) and arising in the
evaluation of an expression.

Thanks to the use of noise symbols AA keeps track of first-order correlations between
quantities; therefore, it can provide much tighter intervals than conventional interval
arithmetic, especially in long chained computations.

The sharing of noise symbols indicates some partial dependency between the underlying
quantities and determined by the corresponding coefficients ௜ and ௜ .

The signs of ௜ and ௜ are not meaningful in themselves, because the sign of ௜ is arbitrary;
but the relative sign of ௜ and ௜ defines the direction of the correlation.

Affine arithmetic
Example. Consider two affine forms

ଵ ଷ ସ

ଵ ଶ ସ

From this data, we can tell that 𝑥෤ lies in the
interval 𝒙 = [11,29], and 𝑦෤ lies in the interval
𝒚 = [6,14], i.e., the pair (𝑥෤, 𝑦෤) lies somewhere
in the box = 11,29 × [11,29] (dark gray
rectangle).

However, since the two affine forms include
the same noise variables, 𝑥෤ and 𝑦෤ are not independent, so they must lie in the light gray region, which
is the set of all possible values of (𝑥ො, 𝑦ො), when the noise variables 𝜀ଵ, ⋯ , 𝜀ସ are independently chosen in
[−1,1]. This set is called the joint range of the forms 𝑥෤ and 𝑦෤ and is denoted as 𝑥ො, 𝑦ො .

5 10 15 20 25 30 35
5

6

7

8

9

10

11

12

13

14

15

Affine arithmetic
In order to perform computation on affine forms, all standard arithmetic operations, as well as other
classical functions must be redefined for affine forms.

Affine-linear operations, such as addition and subtraction, on affine forms can be defined
straightforwardly. Given two affine forms 𝑥ො, 𝑦ො and 𝛼, 𝛽, 𝛾 ∈ R, the following holds

𝛼𝑥ො + 𝛽𝑦ො + 𝛾 = 𝛼𝑥଴ + 𝛽𝑦଴ + 𝛾 + ∑ 𝛼𝑥௜ + 𝛽𝑦௜ 𝜀௜
௡
௜ୀଵ .

Nonlinear operations usually result in nonlinear functions of the noise symbols, so they must be
approximated by a respective affine form and the approximation error must be considered. Given 𝑥ො, 𝑦ො

and some non-linear function 𝑧 = 𝑓 𝑥, 𝑦 , we have

𝑧 = 𝑓 𝑥଴ + 𝑥ଵ𝜀ଵ + ⋯ + 𝑥௡𝜀௡, 𝑥଴ + 𝑥ଵ𝜀ଵ + ⋯ + 𝑥௡𝜀௡ = 𝑓∗(𝜀ଵ, 𝜀ଶ, ⋯ , 𝜀௡).

Then, we must find some affine function

𝑓௔ 𝜀ଵ, 𝜀ଶ, ⋯ , 𝜀௡ = 𝑧଴ + ∑ 𝑧௜𝜀௜
௡
௜ୀଵ + 𝑧௠𝜀௠.

that approximates 𝑓∗ reasonably well on its domain and 𝑧௠𝜀௠ is the error of this approximation. For
simplicity, the dependencies in higher order terms are neglected.

Revised affine arithmetic
In revised affine arithmetic (RAA) a revised affine form of length is defined as a sum of
a standard affine form and a term that represents all errors introduced during
a computation (approximation and rounding errors), i.e.,

଴ ଵ ଵ ௡ ௡ ௥ ,

where ௥ with ௥ is the so-called accumulation error.

Thanks to the use of accumulation error, the length of affine form is constant during the
whole computation.

The accuracy of computation of revised affine forms is the same as the accuracy.

Revised affine arithmetic
Affine-linear operation

଴ ଴ ௜ ௜ ௜
௡
௜ୀଵ ௜ ௜ ,

Multiplication is challenging, there are several approaches:

+ Trivial approximation (quite rough but fast)

଴ ଴ ଴ ௜ ଴ ௜ ௜
௡
௜ୀଵ ௥ ,

௥ ଴ ௥ ௥ ଵ ௥ ଵ ௥ ,

+ Min-error approximation (minimizes error but is more time consuming)

଴ ଴ ௠௜௡ ௠௔௫ ଴ ௜ ଴ ௜ ௜
௡
௜ୀଵ ௥ ,

௥ ଴ ௥ ௥ ௠௔௫ ௠௜௡ ,

where ௠௜௡ and ௠௔௫ are extremal values of ∗ on the joint range .

Revised affine arithmetic
Example. Comparison of multiplication formulas. Consider two affine forms

ଵ ଷ ସ ଺ ଻,

ଶ ଷ ସ ଻ ଼.

The results of various multiplication formulas:
min-error: [-174.52, 156.32]
trivial: [-190.6, 200.12] (15%)
Kolev (standard): [-189.22, 197.12] (14%)
Miyajima: [-185.62, 193.52] (13%)
Rump & Kashiwagi: [-184.93, 192.83] (12%)

Amount of overestimation of over : ௔౴

௕౴

-5 5 10 15

-10

-5

5

10

15

Min range for the
product

[-152.4,152.32]

Revised affine arithmetic
Division

௫ො

௬ො
=

௫బ

௬బ
+ ∑ 𝑥௜ −

௫బ

௬బ
𝑦௜ 𝜀௜

௡
௜ୀଵ + 𝑥௥ +

௫బ

௬బ
𝑦௥ [−1,1].

The division can also be defined as 𝑥ො ∗ (1/𝑦ො), where the term 1/𝑦ො can be computed from the approximation of the
function 𝑓 𝑥 = 1/𝑥, which is monotonic in its subdomains (−∞, 0) and (0, +∞).

Monotonic functions
There are generally two approaches to computing the affine approximation of monotonic functions:
the min-range approximation (left) and min-error approximation (right).

The affine approximation of 𝑧 = 𝑓 𝑥

on the interval is given by

𝑧̂ = 𝑎𝑥଴ + 𝑏 + ∑ 𝑎𝑥௜𝜀௜
௡
௜ୀଵ + 𝛿[−1,1],

where 𝑎 and 𝑏 are, respectively,
the slope and the intercept of the
straight line 𝑓௔ 𝑥 that approximates
𝑓 𝑥 , and 𝛿 is the error of this
approximation. x

d
x
u

f(x)

fa(x)=ax+b

x
d

x
u

f(x)

fa(x)=ax+b

Comparison on IA and AA
Example. Consider the function 𝑔 𝑥 = 𝑥ଶ − 𝑥 + 1/ 𝑥ଶ + 1/2 (black line). The figure below shows the interval evaluation of the
natural extension of 𝑔 𝑥 over the interval [−2,2] (left top) and the evaluation of the iterate
ℎ 𝑥 = 𝑔(𝑔 𝑥) (right top). We can see error explosion. The same computation with affine arithmetic gives tight bounds (𝑔 𝑥 –
bottom left, ℎ 𝑥 – bottom right); the iteration contracts to the line.

IA

AA

Practical problems
Drawing implicit curves

An implicit curve is given by the formula 𝑓 𝑥, 𝑦 = 0.

If the formula for 𝑓 𝑥, 𝑦 is simple, then we can represent 𝑦 as a function of 𝑥 and draw a graph.

If the formula for 𝑓 𝑥, 𝑦 is complex, like for example,

𝑓 𝑥, 𝑦 =
ଵହ

ସ
+ 8𝑥 − 16𝑥ଶ + 8𝑦 − 112𝑥𝑦 + 128.0𝑥ଶ𝑦 − 16𝑦ଶ + 128𝑥𝑦ଶ − 128𝑥ଶ𝑦ଶ = 0,

then it is difficult to represent 𝑦 as a function of 𝑥.

So, in general case the problem of drawing implicit curves is considered as to the problem of finding
all zeros of 𝑓 in a box.

Practical problems
Drawing implicit curves

Practical problems
Drawing implicit curves

IA power form

IA on power form
plus first derivative
information

IA on Horner
form x first

IA on Horner
form y first

IA on power form plus
recursive derivative
information IA on Bernstein form Gopalsamy’s method

Reference picture
RAA

Practical problems
Interval Global Optimization

is useful for finding global extrema of functions, especially when function has many global
optima.

The nonlinear optimization problem is usually formulated as a minimization problem of
a nonlinear function with additional constraints:

௡

௡ ௠

௡ ௥

where is the function for which the minimum value is sought, is the independent
variable, is a set of inequality constraints, and a set of equality constraints.

Practical problems
Interval Global Optimization

Branch & Bound is an algorithm design paradigm for discrete and combinatorial
optimization problems.

During the branch and bound
loop, sub-boxes that do not
contain the global minimum
are deleted, while boxes that
could contain the global
minimum are contracted
and divided.

Practical problems
Interval Global Optimization
Consider Shubert’s function

Practical problems
Solving interval parametric linear systems (IPLS)

IPLS are encountered, e.g., in electrical engineering, structural engineering

If uncertainty is introduced into a model described by a system of linear equations, then the
coefficients of the matrix are functions of parameters that vary within prescribed intervals. Assume that
the system has the following form

ଵ ଶ

Corresponding interval (nonparametric) linear system

1 𝑝ଶ
ଶ 𝑝ଶ

𝑝ଵ 2 𝑝ଵ

𝑝ଶ 𝑝ଵ 3

𝑥ଵ

𝑥ଶ

𝑥ଷ

=

1
𝑝ଵ

ଶ

𝑝ଶ
ଶ

,

1 [0.81] [0,0.9]
[0,1] 2 [0,1]

[0,0.9] [0,1] 3

𝑥ଵ

𝑥ଶ

𝑥ଷ

=

1
[0,1]

[0,0.81]

Practical problems
Solving interval and interval parametric linear systems

Comparison of solution sets: parametric (left) and non-parametric with (right) (notice the parametric
solution inside the red ellipse).

Practical problems
Game theory
Cooperative games under incomplete information (partially defined cooperative games) were first considered by
Willson (1993).

Two-person zero-sum game with uncertain payoffs ([1], October 2020).

If the payoffs are uncertain, then the entries of the payoffs matrix are uncertain.

If the payoff matrix has a saddle point, then the optimal strategy can be obtained as follows:
1. Select the minimum element of each row of the payoff matrix using ordering of intervals and choose the

maximum value among them. It is called the maximin value.

2. Select the maximum element of each column of the payoff matrix using ordering of intervals and choose
the minimum value among them. It is called the minimax value.

3. The position where the maximin value equals the minimax value in a game is called the saddle point and
the corresponding strategies of the saddle point are called optimum strategies. The payoff at the saddle
point is called the value of the game.

[1] https://www.researchgate.net/publication/346090311_Research_article_game_theory_problems_using_interval_parameters

Practical problems
Game theory

In order to find minimax and maximin values, we must know how to compare intervals.

Let 𝒂 = [𝑎, 𝑎ത], 𝒃 = 𝑏, 𝑏ത , then (according to [1])

𝒂 < 𝒃 iff 𝑎௖ < 𝑏௖ .

𝒂 > 𝒃 iff 𝑎௖ > 𝑏௖ .

𝒂 < 𝒃 iff 𝑎∆ < 𝑏∆ whenever 𝑎௖ = 𝑏௖ .

𝒂 > 𝒃 iff 𝑎∆ > 𝑏∆ whenever 𝑎௖ = 𝑏௖ .

𝒂 = 𝒃 whenever 𝑎∆ = 𝑏∆ and 𝑎௖ = 𝑏௖ .

[1] https://www.researchgate.net/publication/346090311_Research_article_game_theory_problems_using_interval_parameters

Practical problems
Game theory

If there is no saddle point, the optimum strategies and the value of the game can be computed as
follows. Let the interval payoff matrix be given as

𝑨 =
𝒂 𝒃
𝒄 𝒅

.

Then, the optimum mixed strategies are given by

𝑆஺ =
𝐴ଵ 𝐴ଶ

𝑝ଵ 𝑝ଶ
and 𝑆஻ =

𝐵ଵ 𝐵ଶ

𝑞ଵ 𝑞ଶ
,

where

𝑝ଵ =
𝒅ି𝒄

𝒂ା𝒅 ି 𝒃ା𝒄
and 𝑝ଶ = 1 − 𝑝ଵ,

𝑞ଵ =
𝒅ି𝒃

𝒂ା𝒅 ି 𝒃ା𝒄
and 𝑞ଶ= 1 − 𝑞ଵ,

and the value of the game is 𝑉 =
𝒂𝒅ି𝒃𝒄

𝒂ା𝒅 ି 𝒃ା𝒄
.

[1] https://www.researchgate.net/publication/346090311_Research_article_game_theory_problems_using_interval_parameters

Practical problems
Game theory

Example. Consider the following 2×2 game with payoff as intervals. We solve it by existing method.

𝑨 =
𝐴ଵ

𝐴ଶ

[1,3] [4,6]
[6,8] [2,4]

.

Test for the saddle point:

Row minima: row1: [1,3] (2<5), row2: [2,4] (3<7), which gives minimax = [2,4] (3>2)

Columns maxima: col1: [6,8] (7>2), col2: [4,6] (5>3), which gives maximin = [4,6] (5<7)

There is no saddle point: 2,4 ≠ [4,6]. We must compute optimum strategies and the value of the game.

𝑝ଵ =
ଶ,ସ ି[଺,଼]

ଷ,଻ ି[ଵ଴,ଵସ]
=

ଶ

ଵଵ
, 2 , 𝑝ଶ = −1,

ଽ

ଵଵ
, 𝑞ଵ =

ଶ,ସ ି[ସ,଺]

ଷ,଻ ି[ଵ଴,ଵସ]
= 0,

ସ

ଷ
, 𝑞ଶ = −

ଵ

ଷ
, 1 .

𝑆஺ =
𝐴ଵ 𝐴ଶ

ଶ

ଵଵ
, 2 −1,

ଽ

ଵଵ

, 𝑆஺ =
𝐵ଵ 𝐵ଶ

0,
ସ

ଷ
−

ଵ

ଷ
, 1

, 𝑉 =
ଵ,ଷ ଶ,ସ ି[ସ,଺][଺,଼]

[ିଵଵ,ଷ]
=

ଶ,ଵଶ [ଶସ,ସ଼]

[ିଵଵ,ଷ]
=

[ିସ଺,ିଵଶ]

[ିଵଵ,ିଷ]
=

ଵଶ

ଵଵ
,

ସ଺

ଷ
.

𝐵ଵ 𝐵ଶ

[1] https://www.researchgate.net/publication/346090311_Research_article_game_theory_problems_using_interval_parameters

Interval and affine software
+ INTLAB (INTerval LABoratory) – The Matlab/Octave toolbox for Reliable Computing (interval and

affine computation) (copyright)
Developed by Prof. Dr. Siegfried M. Rump form Institute for Reliable Computing of Hamburg University of Technology

+ Interval - The Octave based interval package for real-valued interval arithmetic (GPL-3.0+)
Developed by Oliver Heimlich

+ libaffa – C++ Affine Arithmetic library for GNU/Linux (GNU Lesser General Public License v2.1).
Developed by Olivier Gay, David Coeurjolly, Nathan Hurst

+ aaflib - an Affine Arithmetic C++ Library (free software)
Developed at the Institute of Microelectronic Systems in Hannover

+ YalAA (Yet Another Library for Affine Arithmetic)
Developed by Stefan Kiel from University of Duisburg-Essen

