
Interval and affine

computation
Iwona Skalna

AGH University of Science and Technology

Outline

+Floating-point numbers

+Rounding errors

+ Interval computation

+Affine and revised affine forms

+Practical applications

Floating-point numbers

+ Floating-point (FP) numbers are important because they are ubiquitous in scientific

computing. A floating-point number is represented as

𝒔 × 𝜷𝒆 × 𝒅𝟎. 𝒅𝟏 𝒅𝟐⋯𝒅𝒑−𝟏

Where 𝑠 ∈ {−1,1} is the sign, 𝛽 is called the base, e is the exponent, p is the precision, and

𝑑0. 𝑑1𝑑2⋯𝑑𝑝−1 part is called the significand (mantissa, fraction, coefficient).

The significand is normalized to belong to the interval 0, 𝛽 .

+ Why „floating point”? Because the exponent logically determines where the decimal point

is placed within (or even outside) the significand.

+ IEEE 754 standard requires 𝛽=2, p=24 for single precision and p=53 for double precision.

+ Thanks to the use of 𝛽=2, only 23 bits and 52 bits must be stored for, respectively, single

and double precision, since all normalized numbers starts with 1, so no need to store it.

Floating-point numbers

Floating-point numbers do not behave as do the real numbers encountered in mathematics:

+ There is only a finite set of floating-point numbers, since computer representation

must be finite.

+ The set of floating-point numbers does not form a field under the usual set of

arithmetic operations.

+ Some common rules of real arithmetic are not always valid when applied to floating-

point operations.

Floating-point arithmetic

Let a, b and c be floating-point numbers. Then

+ 𝑎 + 𝑏 may not be a floating-point number

+ 𝑎 + 𝑏 may not always equal 𝑎 ⊕ 𝑏

+ Similarly for the operations −, × and /

+ Recall that floating-point numbers do not form a field

+ 𝑎 ⊕ 𝑏 ⊕ 𝑐 may not be equal to 𝑎 ⊕ 𝑏⊕ 𝑐 (lack of associativity)

+ Similarly for other elementary operation

+ 𝑎 ⊗ 𝑏⊕ 𝑐 may not be equal to 𝑎 ⊗ 𝑏 ⊕ 𝑎⊗ 𝑐 (lack of distributivity)

+ 1⊘ 𝑎 ⊗ 𝑎 may not be equal to a.

Floating-point numbers

Consequences:

+ Since there is only a finite set of floating-point numbers, there are rational numbers

which are not floating-point numbers (transcendentals such as , e, 2 cannot be

represented exactly by a floating-point value regardless of format or precision).

+ The decimal equivalent of any finite floating-point value contains a finite number of

non-zero digits.

+ Floating-point computation is not guaranteed because of rounding errors => the

result that is not representable as machine number is rounded.

Rounding and truncation errors

What will be the result in double precision?

253+1−253 ≠ 1 (why?)

253+1 = ?

A = 253, B = 1

𝐴 = 2𝑒𝑥𝑝𝐴 ∗ 1 +
𝑎1
21

+
𝑎2
22

+⋯+
𝑎52
252

, 𝐵 = 2𝑒𝑥𝑝𝐵 ∗ 1 +
𝑏1
21

+
𝑏2
22

+⋯+
𝑏52
252

63 52 0

exponent (11 bit) significand (52 bit)
sign

Rounding and truncation errors

(𝐴 + 𝐵) = 2𝑒𝑥𝑝𝐴 ∗ 1 +
𝑎1

21
+

𝑎2

22
+⋯+

𝑎52

252
2𝑒𝑥𝑝𝐵 ∗ 1 +

𝑏1

21
+

𝑏2

22
+⋯+

𝑏52

252

The first thing to do is to make the exponents of A and B agree. The respective term is

divided by the difference xB = expA – expB (expA > expB).

𝐴 + 𝐵 = 2𝑒𝑥𝑝𝐴 ∗ 1 +
𝑎1

21
+

𝑎2

22
+⋯+

𝑎52

252
+ 2𝑒𝑥𝑝𝐴 ∗

1+
𝑏1
21
+
𝑏2
22
+⋯+

𝑏52
252

2𝑥𝐵

(𝐴 + 𝐵) = 2𝑒𝑥𝑝𝐴 ∗ 1 +
𝑎1
21

+
𝑎2
22

+⋯+
𝑎52
252

+
1

2𝑥𝐵
+

𝑏1
21+𝑥𝐵

+
𝑏2

22+𝑥𝐵
+⋯+

𝑏52
252+𝑥𝐵

In the cosidered case xB = 53, so all terms after
𝑎52

252
will be neglected and the result will be

𝐴 + 𝐵 = 2𝑒𝑥𝑝𝐴 ∗ 1 +
𝑎1

21
+

𝑎2

22
+⋯+

𝑎52

252
= 𝐴 .

Remedy: transform 253+1-253 => 253-253+1 = 1.

Rounding and truncation errors

Consider the following quadratic equation:

𝑥2 + 2𝑝𝑥 − 1 = 0

The smaller (per modulus) root is 𝑥1 = −𝑝 + 𝑝2 + 1.

In double precision floating-point arithmetic (binary64),

if p≥108, then 1/p2 < 2-53 and 1+p2=p2(1+1/p2)=p2.

So, 𝑥2 = 0, whereas the correct value is 𝑥1 = 5 ∙ 10−9

Remedy: transform 𝑥2 = −𝑝 + 𝑝2 + 1 => 𝑥2 =
1

2𝑝
. (correct!)

Rounding and truncation errors

Does increasing accuracy can help?

𝑓 = 333.75𝑏6 + 𝑎2(11𝑎2𝑏2 − 𝑏6− 121𝑏4 − 2) + 5.5𝑏8 + 𝑎/2𝑏,

𝑎 = 77617, 𝑏 = 33096.

single precision f ≈ 1.172603...

double precision f ≈ 1.1726039400531...

quadruple precision f ≈ 1.172603940053178...

correct value f = −0.827386...= a/2b − 2

Remedy: transform => challenge

Rounding and truncation errors

The Patriot Missile Failure

On February 25, 1991, during the Gulf War, an American Patriot Missile battery in Dharan, Saudi
Arabia, failed to track and intercept an incoming Iraqi Scud missile. The Scud struck American
Army barracks, killing 28 soldiers and injuring around 100 other people.

+ An investigation discovered a bug in the Patriot’s tracking software that caused the system’s
internal clock to drift gradually from the real time.

+ The time was stored as an integer number in a 24-bit register with an accuracy of 1/10 of a
second. This resulted in some portion of the time value being lost as it incremented each 0.1
seconds.

+ To calculate a target’s location, the data had to be cast to real numbers
1/10 is 1/24+1/25+1/28+1/29+1/212+1/213+… In other words, binary expansion of the value
1/10 is 0.0001100110011001100110011001100…. That’s why this value, stored in a 24-bit
register, was rounded to 0.00011001100110011001100, resulting in a precision error of
0.0000000000000000000000011001100… in binary format, or about 0.000000095 in decimal
format. During 100 hours of continuous operation, this error would build up to
0.000000095100606010=0.34 seconds.

+ An R-17’s velocity is 1676 m/s, so it covers over half a kilometer in 0.34 seconds, which is
more than enough for the missile to slip past the Patriot’s intercept range. The funny thing is
that this time-calculation bug was fixed only in some parts of the software, but not in all of it.

Correct

After 8 hours

Incorrect

Alternative representation

+ Consider a real number :

𝑥 = 5.9 // not a machine number

+ We can substitute x with a pair of machine numbers (very rough representation)

𝑥 ∈ 5.75,6 // both 5.74 and 6 are machine numbers

+ Floating-point representation of 𝑥 is:

0 10000000001 0111100110011001100110011001100110011001100110011001|100 …

0 10000000001 0111100110011001100110011001100110011001100110011001 (round down)

0 10000000001 0111100110011001100110011001100110011001100110011010 (round up)

Tight interval 𝒙 = [5.8999999999999995, 5.9000000000000004] that represents 𝑥 = 5.9.

Why interval arithmetic is so useful?

+ Measurement errors – measured value accuracy of a measurement tool.

+ Dynamical model parameters – the distribution probability is not known, but the range for the

parameters can be given.

+ Truncation errors – for example when approximating a function with Taylor series or when

approximating derivatives with finite differences.

+ Sensitivity analysis – examining the influence of parameter changes on the system behavior.

+ Infinite numer of states – impossible to process them separately.

Intervals

The main idea is to represent an unknown value 𝑥 with a known absolute error ≤ 𝑟 as

a closed and bounded interval

𝒙 = 𝑥, ҧ𝑥 = 𝑥 − 𝑟, 𝑥 + 𝑟 = 𝑥 ∈ R | 𝑥 ≤ 𝑥 ≤ ҧ𝑥 .

It is guaranteed that 𝑥 is „somewhere” between the lower bound 𝑥 and the upper bound ҧ𝑥.

On the other hand, given an interval 𝑥, ҧ𝑥 , its midpoint

𝑥𝑐 = (𝑥 + ҧ𝑥)/2,

can be tread as approximation of unknown value 𝑥 and its radius

𝑥∆ = (ҧ𝑥 − 𝑥)/2,

can be treated as an approximation error:

𝑥 ∈ 𝑥, ҧ𝑥 ⟺ 𝑥 − 𝑥𝑐 ≤ 𝑥∆.

The set of all intervals is denoted as IR.

avoid some of FP drawbacks, but have some other problems

Interval arithmetic (IA)

Given the interval values

𝒙 = 𝑥, ҧ𝑥 and 𝒚 = 𝑦, ത𝑦 ,

the elementary operations ∘∈ +,−,×,/ are defined as

𝒙 ∘ 𝒚 = hull 𝑥 ∘ 𝑦 | 𝑥 ∈ 𝒙, 𝑦 ∈ 𝒚 ,

where hull S = [inf S, sup S] (for S ≠ ∅).

Elementary arithmetic operations on intervals are inclusion isotone, i.e.,

𝑥 ⊆ 𝑥′ ∧ 𝑦 ⊆ 𝑦′ ⟹ 𝑥 ∘ 𝑦 ⊆ 𝑥′ ∘ 𝑦′ , ∘∈ +,−,×,/

Interval arithmetic

Endpoint form of elementary operations (Moore):

𝒙 + 𝒚 = 𝑥 + 𝑦, ҧ𝑥 + ത𝑦

𝒙 − 𝒚 = 𝑥 − ത𝑦, ҧ𝑥 − 𝑦

𝒙 ∗ 𝒚 = min 𝑥 ∗ 𝑦, 𝑥 ∗ ത𝑦, ҧ𝑥 ∗ 𝑦, ҧ𝑥 ∗ ത𝑦 ,max 𝑥 ∗ 𝑦, 𝑥 ∗ ത𝑦, ҧ𝑥 ∗ 𝑦, ҧ𝑥 ∗ ത𝑦

1/𝒚 = 1/ത𝑦, 1/𝑦 (0 ∉ 𝒚)

𝒙/ 𝒚 = 𝒙 ∗ 1/𝒚 (0 ∉ 𝒚)

Interval arithmetic

The algebraic system of interval arithmetic is only an abelian monoid under both addition

and multiplication, additive and multiplicative inverses exist only for intervals of zero radius.

Interval arithmetic operations only preserve some of the algebraic laws valid for real

numbers. In particular, the following laws hold true for arbitrary intervals 𝒙, 𝒚, and 𝒛:

𝒙 + 𝒚 = 𝒚 + 𝒙 𝒙 ∗ 𝒚 = 𝒚 ∗ 𝒙 (commutativity)

𝒙 + 𝒚 + 𝒛 = 𝒙 + 𝒚 + 𝒛 𝒙 ∗ 𝒚 ∗ 𝒛 = 𝒙 ∗ (𝒚 ∗ 𝒛) (associativity)

𝒙 + 0 = 0 + 𝒙 1 ∗ 𝒙 = 𝒙 ∗ 1 (neutral element)

Interval arithmetic

The distributivity and cancellation are present in the interval arithmetic in a weaker form as

sub-distributivity and sub-cancellation, respectively.

For arbitrary intervals 𝒙, 𝒚, 𝒛, the following holds true:

+ sub-distributivity:

𝒙 ∗ 𝒚 ± 𝒛 ⊆ 𝒙 ∗ 𝒚 ± 𝒙 ∗ 𝒛 𝒙 ± 𝒚 ∗ 𝒛 ⊆ 𝒙 ∗ 𝒛 ± 𝒚 ∗ 𝒛

+ sub-cancellation:

𝒙 − 𝒚 ⊆ 𝒙 + 𝒛 − (𝒚 + 𝒛) 𝒙/𝒚 ⊆ (𝒙 ∗ 𝒛)/(𝒚 ∗ 𝒛)

0 ∈ 𝒙 − 𝒙 1 ∈ 𝒙/𝒙

Interval arithmetic

Example. Let 𝒙 = [−5,3] and 𝒚 = 1,2 . Then

−5,3 + [1,2] = −5 + 1, 3 + 2 = −4,5

−5,3 − [1,2] = −5 − 2, 3 − 1 = −7,2

−5,3 ∗ 1,2 = min −5 ∗ 1, −5 ∗ 2, 3 ∗ 1, 3 ∗ 2 ,max −5 ∗ 1,−5 ∗ 2, 3 ∗ 1, 3 ∗ 2 = [−10,6]

1/ 1,2 = 1 ∗ 1/2,1 = 1/2, 1

−5,3 /[1,2] = −5,3 ∗ 1/2, 1 = −5,3

Interval arithmetic

Example. Let 𝒙 = [−6,1], 𝒚 = 1,2 and 𝒛 = −3,1 .

Sub-distributivity

−6,1 ∗ 1,2 + −6,1 ∗ −3,1 = −12,2 + −6,18 = [−18,20]

−6,1 ∗ 1,2 + −3,1 = −6,1 ∗ −2,3 = [−𝟏𝟖, 𝟏𝟐] ⊂ [−𝟏𝟖, 𝟐𝟎]

Sub-cancellation

−6,1 + −3,1 − 1,2 + −3,1 = −9,2 − −2,3 = [−12,4]

−6,1 − 1,2 = −𝟖, 𝟎 ⊂ [−𝟏𝟐, 𝟒]

−6,1 − [−6,1] = −𝟕, 𝟕 ≠ 𝟎

1,2 /[1,2] = 𝟏/𝟐, 𝟐 ≠ 𝟏

Computer interval arithmetic

In computer interval arithmetic, computations are performed on intervals where

the lower bound 𝑥 and the upper ҧ𝑥 are machine numbers.

In order to to guarantee that the obtained interval solution is rigorous, i.e., the unknown

exact result is included in the resulting interval, the so-called outward rounding procedure

is used:

+ the lower bound of the resulting interval must be rounded downward (towards -)

+ the upper bound of the resulting interval must be rounded upward (towards +)

The outward rounding is optimal when

𝒙 = ⋂ 𝒚 = 𝑦, ത𝑦 | 𝒚 ⊇ 𝒙, 𝑦, ത𝑦 are machine numbers .

Computer interval arithmetic

Endpoint form of elementary operations (Moore) in computer arithmetic is as follows:

𝒙 + 𝒚 = ∇ 𝑥 + 𝑦 , ∆ ҧ𝑥 + ത𝑦

𝒙 − 𝒚 = ∇ 𝑥 − ത𝑦 , ∆ ҧ𝑥 − 𝑦

𝒙 ∗ 𝒚 = min ∇ 𝑥 ∗ 𝑦 , ∇ 𝑥 ∗ ത𝑦 , ∇ ҧ𝑥 ∗ 𝑦 , ∇ ҧ𝑥 ∗ ത𝑦 ,max ∆ 𝑥 ∗ 𝑦 , ∆ 𝑥 ∗ ത𝑦 , ∆ ҧ𝑥 ∗ 𝑦 , ∆ ҧ𝑥 ∗ ത𝑦

𝟏/ 𝒚 = ∇ 1/ത𝑦 , ∆ 1/𝑦 (0 ∉ 𝒚)

𝒙/ 𝒚 = 𝒙 ∗
𝟏

𝒚
(0 ∉ 𝒚)

where ∇ denote downward rounding and ∆ denote upward rounding.

Computer interval arithmetic

The following examples illustrate interval operations and outward rounding. The base is

B=10 and the length of significand is L=2.

[1.1,1.2] + [−2.1,0.2] = [−1.0,1.4]

[1.1,1.2] − [−2.1,0.2] = [0.9,3.3]

[1.1,1.2][−2.1,0.2] = [−2.52,0.24], rounded: [−2.6,0.24]

[1.1,1.2]/[−2.1,0.2] not defined since 0𝒚

[−2.1,0.2]/[1.1,1.2] = [−21/11,2/11], rounded: [−2.0,0.19]

[−2.1,0.2]/[1.1,1000] = [−21/11,2/11], rounded: [−2.0,0.19]

Outward rounding

In 32-bit architecture, the FPU (floating-point unit) 16-bit control word (CW) allows to set,

among others, the rounding mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X RC PC PM UM OM ZM DM IM

In
fi

n
it

y
 c

o
n

tr
o

l

R
o

u
n

d
in

g
 c

o
n

tr
o

l

P
re

ci
si

o
n

 c
o

n
tr

o
l

P
re

ci
si

o
n

U
n

d
e
rf

lo
w

O
v
e
rf

lo
w

Z
e
ro

 d
iv

id
e

D
e
n

o
rm

a
l
O

p
e
ra

n
d

In
va

li
d

 O
p

e
ra

n
d

Exception masks

Outward rounding

RC are rounding mode bits; they can be set as follows:

00 = rounding to nearest or to even if equally distant (default)

01 = rounding down (toward -infinity)

10 = rounding up (toward +infinity)

11 = truncation (toward 0)

Exemplary assembler implementation (Microsof VS):

static unsigned short CRoundDown = 0x0400;

static unsigned short CRoundUp = 0x0800;

static unsigned short CRoundNear = 0xF3FF;

static unsigned short Ctrunc = 0x0C00;

void RoundDown() {
__asm{ fstcw oldcw
// to ensure the storage instruction is completed

fwait
mov ax, oldcw
// clears only the RC bits, leaving all other bits unchanged

// not necessary here because both bits will be set

and ax, CRoundNear
// this will set both bits of the RC field to the truncating mode

// without affecting any of the other field's bits

or ax, CRoundUp
mov newcw, ax
// load the modified Control Word

fldcw newcw
}

Range bounding

The problem of range bounding is often called the main problem of interval computation.

The problem of computing the range of a function over a given interval (or

a box in general case) can be formalized as follows: given a real-valued function

𝑓: R𝑛 ⊇ 𝐷𝑓 → R and a box 𝒙, we are interested in the range

𝑅𝑔𝑒 𝑓 𝒙 = 𝑓 𝑥 | 𝑥 ∈ 𝒙 ∩ 𝐷𝑓 .

If 𝑓 is continuous, then 𝑅𝑔𝑒 𝑓 𝒙 is a closed interval.

For many classes of functions, computing 𝑅𝑔𝑒 𝑓 𝒙 is an NP-hard problem.

Therefore, in practical situations, we often ask for an interval enclosure for 𝑅𝑔𝑒 𝑓 𝒙 , i.e., an

interval 𝒚 such that 𝑅𝑔𝑒 𝑓 𝒙 ⊆ 𝒚.

The tightest possible interval enclosure is simply hull 𝑅𝑔𝑒 𝑓 𝒙 . If function is monotone, the

hull can be obtained by computing the values of the function at respective endpoints.

Range bounding

If a real-valued function 𝑓 is represented by an arithmetic expression f, then the interval

enclosure 𝒚 can be obtained by a (straightforward) interval evaluation of f over 𝒙.

The interval evaluation relies on replacing the real variables by the corresponding interval

variables and the real arithmetic operations by the corresponding interval operations.

Interval valued function 𝒇 ∶ IR𝑛 ⊇ 𝑫 → IR induced by expression f, is said to be the

natural interval extension of 𝑓.

If the interval evaluation is defined, then 𝑓 𝑥 ∈ 𝒇 𝒙 .

If 𝒙 contains a point 𝑥 ∉ 𝐷𝑓, then the interval evaluation is not defined.

Range bounding

Sometimes, the interval evaluation is not defined even if 𝒙 ⊆ 𝐷𝑓…

Example. Consider a real-valued function 𝑓 𝑥 = 1/ 𝑥2 + 2 . The function is defined for all real

numbers and takes values from the interval (0,1].

As it is well known 𝑎𝑛 = 𝑎 ∗ 𝑎⋯∗ 𝑎
𝑛−𝑡𝑖𝑚𝑒𝑠

, so we have

𝒇 −2,2 =
1

−2,2 ∗ −2,2 + 2
=

1

−4,4 + 2
=

1

−2,6

which means that 𝒇 −2,2 is not defined for 𝒙 = −2,2 ,

(the division cannot be performed since the denominator

contains 0) despite −2,2 ⊂ 𝐷 = ℛ.

Having properly defined the square function we will obtain:

𝒇 −2,2 =
1

−2,2 2 + 2
=

1

0,4 + 2
=

1

2,6
=

1

6
,
1

2

Range bounding

…and the result much depends on the syntactic formulation of the expression for 𝑓. The

difference between exact range and the computed range is called the overestimation.

Example. Consider a real-valued function 𝑓 𝑥 = 𝑥2 − 2𝑥 + 1. The function is defined for

all real numbers.

Let 𝒙 = 0,1 . Then

𝒇 [0,1] = 0,1 ∗ 0,1 − 2 ∗ 0,1 + 1 = −1,2

We can write 𝑓 𝑥 in the following two equivalent forms:

𝑔 𝑥 = 𝑥 ∗ (𝑥 − 2) + 1

ℎ 𝑥 = (𝑥 − 1)2

Then

𝒈 [0,1] = 0,1 ∗ (0,1 − 2) + 1 = −1,1 (50% overestimation)

𝒉 [0,1] = ([0,1] − 1)2= −1,1 2 = [0,1] (hull)

Range bounding

The overestimation can be arbitrarily large.

Example. Consider a real-valued function given by the expression: 𝑓 𝑥 = 1/ 1 − 𝑥 + 𝑥2 .

The function is defined for all real numbers and takes value from (0,4/3].

However, for intervals [0, 𝑡], the value

𝒇 [0, 𝑡 =
1

1 − 0, 𝑡 + 0, 𝑡 2
=

1

1 + 𝑡2
,
1

1 − 𝑡

If 𝑥 → 1 then the left upper bound of the resulting interval

tends to +.

This huge overestimation is caused by multiple occurrences of variable 𝑥
in the considered function. Subexpressions 1 − 𝑥 and 𝑥2 are calculated

as if they were independent, i.e., 𝑥 is treated as a different variable in each

occurrence. Therefore, the range of function f is calculated from the expression

𝑓 𝑥1, 𝑥2 = 1/ 1 − 𝑥1 + 𝑥2
2 over box 0, 𝑡 × 0, 𝑡 .

We can rewrite 𝑓 into an equivalent form as 𝑔 𝑥 = 4/ 3 + (1 − 2 ∗ 𝑥)2 . Then 𝒈 𝑥 = [0,4/3] (hull).

Range bounding

The following theorem is one of the most important theorems of interval analysis.

Theorem. (Moore, Neumaier) Let 𝒇 be a natural interval extension of real function 𝑓 represented by the

arithmetic the expression f in which each variable 𝑥𝑖 , (𝑖 = 1,⋯ , 𝑛) occurs only once. Then, for all 𝒙 ⊆ 𝐷𝑓

𝒇 𝒙 = hull 𝑹𝒈𝒆 𝑓 𝒙).

Unfortunately, for many expressions, it is difficult to rearrange them so that the assumptions of the above

theorem are fulfilled.

The problem of multiple occurrence of variables in an expression is known as the

dependency problem.

If it is not possible to obtain a single occurrence of each variable, we should at least try to reduce the number of

occurrences of all variables as much as possible.

Symbolic manipulation of arithmetic expressions has proven to be useful in the detection and removal of multiple

occurrences of variables.

Obviously, we can never be sure to obtain the best form of an expression, but even a small reduction in the number

of occurrences of variables will improve the accuracy of the final enclosure.

Range bounding

The natural interval extension is only one of the infinitely many inclusion monotonic interval

extensions of a real function.

If the reduction of the number of occurrences of variables is not satisfactory, some more-

sophisticated interval extensions must be used to reduce the effect of the interval dependency

(and overestimation). Below are mentioned the most known interval extensions:

+ centered form, generalized centered form

+ bi-centered form

+ mean value form

+ Taylor expansion

+ Bernstein expansion

They are useful, but often require automatic differentiation or the underlying formulas are quite

complex.

Other ways to improve the results of interval computation?

Affine arithmetic (AA)

One of the possible ways to handle dependency/overestimation problem of IA is to use

affine arithmetic, which is a model of self-validated numerical computation.

In affine arithmetic an unknown value 𝑥 is represented by an affine form, which is

a 1-degree polynomial

ො𝑥 = 𝑥0 + 𝑥1𝜀1 +⋯+ 𝑥𝑛𝜀𝑛,

where the central value 𝑥0 and the partial deviations 𝑥𝑖 are finite floating-point numbers;

the noise symbols (or dummy variables) 𝜀𝑖 are unknown but assumed to vary independently

within the interval [−1,1].

Each noise symbol 𝜀𝑖 stands for an independent component of the total uncertainty of the

ideal quantity 𝑥 and the corresponding coefficient 𝑥𝑖 gives the magnitude of that

component.

keeps track of first-order correlations between quantities

Affine arithmetic

The sources of uncertainty in an affine form can be divided into:

+ External sources – already present in the input data,

+ Internal sources – due to affine approximations and rounding errors.

The semantics of affine forms is formalized by

The fundamental invariant of affine arithmetic states that, at any instant between AA

operations, there is a single assignment of values from the interval [−1,1] to each of the

noise variables in use that makes the value of every affine form ො𝑥 equal to the true value of

the corresponding ideal quantity 𝑥.

Affine forms Intervals

Every affine form implies the interval for an unknown 𝑥:

𝑥 ∈ ො𝑥 = 𝑥0 − 𝑟, 𝑥0 + 𝑟 , where 𝑟 = σ𝑖=1
𝑛 𝑥𝑖 is the total deviation.

The interval ො𝑥 is the tightest interval that contains all possible values of ො𝑥 assuming all 𝜀𝑖
vary independently within the interval [−1,1].

Conversely, if 𝑥 ∈ [𝑎, 𝑏], then it can be represented by the affine form

ො𝑥 =
𝑎+𝑏

2
+

𝑏−𝑎

2
𝜀𝑘 ,

where 𝜀𝑘 is a new noise symbol (not present in any previous computation).

Affine forms Intervals

Example. Consider two affine forms

ො𝑥 = 20 − 4𝜀1 + 2𝜀3 +3𝜀4

ො𝑦 = 10 − 2𝜀1 + 1𝜀2 −1𝜀4

The first form implies the interval 𝒙 = 11,29 , the second one implies the

interval 𝒚 = [6,14].

Example. Let 𝒙 = 2,8 , 𝒚 = −5,3 , 𝒛 = −4,−1 . Then, they can be replaced with the

following affine forms

ො𝑥 = 5 + 3𝜀1

ො𝑦 = −1 + 4𝜀2

Ƹ𝑧 = −2.5 + 1.5𝜀3

Affine arithmetic

The key feature of AA is that the same noise symbol 𝜀𝑖 may contribute to the uncertainty of

two or more quantities (inputs, outputs, or intermediate results) ො𝑥 and ො𝑦 arising in the

evaluation of an expression.

Thanks to the use of noise symbols AA keeps track of first-order correlations between

quantities; therefore, it can provide much tighter intervals than conventional interval

arithmetic, especially in long chained computations.

The sharing of noise symbols indicates some partial dependency between the underlying

quantities 𝑥 and 𝑦 determined by the corresponding coefficients 𝑥𝑖 and 𝑦𝑖 .

The signs of 𝑥𝑖 and 𝑦𝑖 are not meaningful in themselves, because the sign of 𝜀𝑖 is arbitrary;

but the relative sign of 𝑥𝑖 and 𝑦𝑖 defines the direction of the correlation.

Affine arithmetic

Example. Consider two affine forms

ො𝑥 = 20 − 4𝜀1 + 2𝜀3 +3𝜀4

ො𝑦 = 10 − 2𝜀1 + 1𝜀2 −1𝜀4

From this data, we can tell that 𝑥 lies in the

interval 𝒙 = [11,29], and 𝑦 lies in the interval

𝒚 = [6,14], i.e., the pair (𝑥, 𝑦) lies somewhere

in the box = 11,29 × [11,29] (dark gray

rectangle).

However, since the two affine forms include

the same noise variables, 𝑥 and 𝑦 are not independent, so they must lie in the light gray region, which

is the set of all possible values of (ො𝑥, ො𝑦), when the noise variables 𝜀1, ⋯ , 𝜀4 are independently chosen in

[−1,1]. This set is called the joint range of the forms 𝑥 and 𝑦 and is denoted as ො𝑥, ො𝑦 .

Affine arithmetic

In order to perform computation on affine forms, all standard arithmetic operations, as well as other

classical functions must be redefined for affine forms.

Affine-linear operations, such as addition and subtraction, on affine forms can be defined

straightforwardly. Given two affine forms ො𝑥, ො𝑦 and 𝛼, 𝛽, 𝛾 ∈ R, the following holds

𝛼 ො𝑥 + 𝛽 ො𝑦 + 𝛾 = 𝛼𝑥0 + 𝛽𝑦0 + 𝛾 + σ𝑖=1
𝑛 𝛼𝑥𝑖 + 𝛽𝑦𝑖 𝜀𝑖 .

Nonlinear operations usually result in nonlinear functions of the noise symbols, so they must be

approximated by a respective affine form and the approximation error must be considered. Given ො𝑥, ො𝑦

and some non-linear function 𝑧 = 𝑓 𝑥, 𝑦 , we have

𝑧 = 𝑓 𝑥0 + 𝑥1𝜀1 +⋯+ 𝑥𝑛𝜀𝑛, 𝑥0 + 𝑥1𝜀1 +⋯+ 𝑥𝑛𝜀𝑛 = 𝑓∗(𝜀1, 𝜀2, ⋯ , 𝜀𝑛).

Then, we must find some affine function

𝑓𝑎 𝜀1, 𝜀2, ⋯ , 𝜀𝑛 = 𝑧0 + σ𝑖=1
𝑛 𝑧𝑖𝜀𝑖 + 𝑧𝑚𝜀𝑚.

that approximates 𝑓∗ reasonably well on its domain and 𝑧𝑚𝜀𝑚 is the error of this approximation. For

simplicity, the dependencies in higher order terms are neglected.

Revised affine arithmetic

In revised affine arithmetic (RAA) a revised affine form of length 𝑛 is defined as a sum of

a standard affine form and a term that represents all errors introduced during

a computation (approximation and rounding errors), i.e.,

ො𝑥 = 𝑥0 + 𝑥1𝜀1 +⋯+ 𝑥𝑛𝜀𝑛 + 𝑥𝑟[−1,1],

where 𝑥𝑟[−1,1] with 𝑥𝑟 ≥ 0 is the so-called accumulation error.

Thanks to the use of accumulation error, the length of affine form is constant during the

whole computation.

The accuracy of computation of revised affine forms is the same as the accuracy.

Revised affine arithmetic

Affine-linear operation

𝛼ො𝑥 + 𝛽 ො𝑦 + 𝛾 = 𝛼𝑥0 + 𝛽𝑦0 + 𝛾 + σ𝑖=1
𝑛 𝛼𝑥𝑖 + 𝛽𝑦𝑖 𝜀𝑖 + 𝛼 𝑥𝑖 + |𝛽|𝑦𝑖 [−1,1],

Multiplication is challenging, there are several approaches:

+ Trivial approximation (quite rough but fast)

Ƹ𝑧 = 𝑥0𝑦0 + σ𝑖=1
𝑛 𝑥0𝑦𝑖 + 𝑦0𝑥𝑖 𝜀𝑖 + 𝑧𝑟[−1,1],

𝑧𝑟 = 𝑦0 𝑥𝑟 + 𝑥 𝑦𝑟 + 𝑥 1 + 𝑥𝑟 ∙ 𝑦 1 + 𝑦𝑟 ,

+ Min-error approximation (minimizes error but is more time consuming)

Ƹ𝑧 = 𝑥0𝑦0 + 0.5 𝑅𝑚𝑖𝑛 + 𝑅𝑚𝑎𝑥 + σ𝑖=1
𝑛 𝑥0𝑦𝑖 + 𝑦0𝑥𝑖 𝜀𝑖 + 𝑧𝑟[−1,1],

𝑧𝑟 = 𝑦0 𝑥𝑟 + 𝑥 𝑦𝑟 + 0.5 𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛 ,

where 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 are extremal values of 𝑓∗ on the joint range ො𝑥, ො𝑦 .

Revised affine arithmetic

Example. Comparison of multiplication formulas. Consider two affine forms

ො𝑥 = 3.4 − 5.6𝜀1 + 𝜀3 − 𝜀4 + 2.3𝜀6 + 0.6𝜀7,

ො𝑦 = 1.4 + 3.6𝜀2 − 𝜀3 + 2𝜀4 + 2.3𝜀7 − 4.5𝜀8.

The results of various multiplication formulas:

min-error: [-174.52, 156.32]

trivial: [-190.6, 200.12] (15%)

Kolev (standard): [-189.22, 197.12] (14%)

Miyajima: [-185.62, 193.52] (13%)

Rump & Kashiwagi: [-184.93, 192.83] (12%)

Amount of overestimation of 𝒃 over 𝒂: 𝑂 𝒂, 𝒃 = 1 −
𝑎Δ

𝑏Δ
∙ 100%

Min range for the

product

[-152.4,152.32]

Revised affine arithmetic

Division

ො𝑥

ො𝑦
=

𝑥0

𝑦0
+ σ𝑖=1

𝑛 𝑥𝑖 −
𝑥0

𝑦0
𝑦𝑖 𝜀𝑖 + 𝑥𝑟 +

𝑥0

𝑦0
𝑦𝑟 [−1,1].

The division can also be defined as ො𝑥 ∗ (1/ො𝑦), where the term 1/ො𝑦 can be computed from the approximation of the

function 𝑓 𝑥 = 1/𝑥, which is monotonic in its subdomains (−∞, 0) and (0, +∞).

Monotonic functions

There are generally two approaches to computing the affine approximation of monotonic functions:

the min-range approximation (left) and min-error approximation (right).

The affine approximation of 𝑧 = 𝑓 𝑥

on the interval is given by

Ƹ𝑧 = 𝑎𝑥0 + 𝑏 + σ𝑖=1
𝑛 𝑎𝑥𝑖𝜀𝑖 + 𝛿[−1,1],

where 𝑎 and 𝑏 are, respectively,

the slope and the intercept of the

straight line 𝑓𝑎 𝑥 that approximates

𝑓 𝑥 , and 𝛿 is the error of this

approximation.

Comparison on IA and AA

Example. Consider the function 𝑔 𝑥 = 𝑥2 − 𝑥 + 1/ 𝑥2 + 1/2 (black line). The figure below shows the interval evaluation of the

natural extension of 𝑔 𝑥 over the interval [−2,2] (left top) and the evaluation of the iterate

ℎ 𝑥 = 𝑔(𝑔 𝑥) (right top). We can see error explosion. The same computation with affine arithmetic gives tight bounds (𝑔 𝑥 –

bottom left, ℎ 𝑥 – bottom right); the iteration contracts to the line.

IA

AA

Practical problems

Drawing implicit curves

An implicit curve is given by the formula 𝑓 𝑥, 𝑦 = 0.

If the formula for 𝑓 𝑥, 𝑦 is simple, then we can represent 𝑦 as a function of 𝑥 and draw a graph.

If the formula for 𝑓 𝑥, 𝑦 is complex, like for example,

𝑓 𝑥, 𝑦 =
15

4
+ 8𝑥 − 16𝑥2 + 8𝑦 − 112𝑥𝑦 + 128.0𝑥2𝑦 − 16𝑦2 + 128𝑥𝑦2 − 128𝑥2𝑦2 = 0,

then it is difficult to represent 𝑦 as a function of 𝑥.

So, in general case the problem of drawing implicit curves is considered as to the problem of finding

all zeros of 𝑓 in a box.

Practical problems

Drawing implicit curves

Practical problems

Drawing implicit curves

IA power form

IA on power form

plus first derivative

information

IA on Horner

form x first

IA on Horner

form y first

IA on power form plus

recursive derivative

information IA on Bernstein form Gopalsamy’s method

Reference picture

RAA

Practical problems

Interval Global Optimization

is useful for finding global extrema of functions, especially when function has many global

optima.

The nonlinear optimization problem is usually formulated as a minimization problem of

a nonlinear function with additional constraints:

𝑓 𝑥 → min, 𝑥 ∈ R𝑛

𝑝 𝑥 ≤ 0, 𝑝: R𝑛 → R𝑚

𝑞 𝑥 = 0, 𝑝: R𝑛 → R𝑟

where 𝑓 𝑥 is the function for which the minimum value is sought, 𝑥 is the independent

variable, 𝑝 𝑥 is a set of inequality constraints, and 𝑞 𝑥 a set of equality constraints.

Practical problems

Interval Global Optimization

Branch & Bound is an algorithm design paradigm for discrete and combinatorial

optimization problems.

During the branch and bound

loop, sub-boxes that do not

contain the global minimum

are deleted, while boxes that

could contain the global

minimum are contracted

and divided.

Practical problems

Interval Global Optimization

Consider Shubert’s function

Practical problems

Solving interval parametric linear systems (IPLS)

IPLS are encountered, e.g., in electrical engineering, structural engineering

If uncertainty is introduced into a model described by a system of linear equations, then the

coefficients of the matrix are functions of parameters that vary within prescribed intervals. Assume that

the system has the following form

𝑝1 ∈ 0,1 , 𝑝2 ∈ 0,0.9

Corresponding interval (nonparametric) linear system

1 𝑝2
2 𝑝2

𝑝1 2 𝑝1
𝑝2 𝑝1 3

𝑥1
𝑥2
𝑥3

=

1
𝑝1
2

𝑝2
2

,

1 [0.81] [0,0.9]
[0,1] 2 [0,1]

[0,0.9] [0,1] 3

𝑥1
𝑥2
𝑥3

=

1
[0,1]

[0,0.81]

Practical problems

Solving interval and interval parametric linear systems

Comparison of solution sets: parametric (left) and non-parametric with (right) (notice the parametric

solution inside the red ellipse).

Practical problems

Game theory

Cooperative games under incomplete information (partially defined cooperative games) were first considered by

Willson (1993).

Two-person zero-sum game with uncertain payoffs ([1], October 2020).

If the payoffs are uncertain, then the entries of the payoffs matrix are uncertain.

If the payoff matrix has a saddle point, then the optimal strategy can be obtained as follows:

1. Select the minimum element of each row of the payoff matrix using ordering of intervals and choose the

maximum value among them. It is called the maximin value.

2. Select the maximum element of each column of the payoff matrix using ordering of intervals and choose

the minimum value among them. It is called the minimax value.

3. The position where the maximin value equals the minimax value in a game is called the saddle point and

the corresponding strategies of the saddle point are called optimum strategies. The payoff at the saddle

point is called the value of the game.

[1] https://www.researchgate.net/publication/346090311_Research_article_game_theory_problems_using_interval_parameters

Practical problems

Game theory

In order to find minimax and maximin values, we must know how to compare intervals.

Let 𝒂 = [𝑎, ത𝑎], 𝒃 = 𝑏, ത𝑏 , then (according to [1])

𝒂 < 𝒃 iff 𝑎𝑐 < 𝑏𝑐 .

𝒂 > 𝒃 iff 𝑎𝑐 > 𝑏𝑐 .

𝒂 < 𝒃 iff 𝑎∆ < 𝑏∆ whenever 𝑎𝑐 = 𝑏𝑐 .

𝒂 > 𝒃 iff 𝑎∆ > 𝑏∆ whenever 𝑎𝑐 = 𝑏𝑐 .

𝒂 = 𝒃 whenever 𝑎∆ = 𝑏∆ and 𝑎𝑐 = 𝑏𝑐 .

[1] https://www.researchgate.net/publication/346090311_Research_article_game_theory_problems_using_interval_parameters

Practical problems

Game theory

If there is no saddle point, the optimum strategies and the value of the game can be computed as

follows. Let the interval payoff matrix be given as

𝑨 =
𝒂 𝒃
𝒄 𝒅

.

Then, the optimum mixed strategies are given by

𝑆𝐴 =
𝐴1 𝐴2
𝑝1 𝑝2

and 𝑆𝐵 =
𝐵1 𝐵2
𝑞1 𝑞2

,

where

𝑝1 =
𝒅−𝒄

𝒂+𝒅 − 𝒃+𝒄
and 𝑝2 = 1 − 𝑝1,

𝑞1 =
𝒅−𝒃

𝒂+𝒅 − 𝒃+𝒄
and 𝑞2= 1 − 𝑞1,

and the value of the game is 𝑉 =
𝒂𝒅−𝒃𝒄

𝒂+𝒅 − 𝒃+𝒄
.

[1] https://www.researchgate.net/publication/346090311_Research_article_game_theory_problems_using_interval_parameters

Practical problems

Game theory

Example. Consider the following 2×2 game with payoff as intervals. We solve it by existing method.

𝑨 =
𝐴1
𝐴2

[1,3] [4,6]
[6,8] [2,4]

.

Test for the saddle point:

Row minima: row1: [1,3] (2<5), row2: [2,4] (3<7), which gives minimax = [2,4] (3>2)

Columns maxima: col1: [6,8] (7>2), col2: [4,6] (5>3), which gives maximin = [4,6] (5<7)

There is no saddle point: 2,4 ≠ [4,6]. We must compute optimum strategies and the value of the game.

𝑝1 =
2,4 −[6,8]

3,7 −[10,14]
=

2

11
, 2 , 𝑝2 = −1,

9

11
, 𝑞1 =

2,4 −[4,6]

3,7 −[10,14]
= 0,

4

3
, 𝑞2 = −

1

3
, 1 .

𝑆𝐴 =
𝐴1 𝐴2
2

11
, 2 −1,

9

11

, 𝑆𝐴 =
𝐵1 𝐵2

0,
4

3
−

1

3
, 1

, 𝑉 =
1,3 2,4 −[4,6][6,8]

[−11,3]
=

2,12 −[24,48]

[−11,3]
=

[−46,−12]

[−11,−3]
=

12

11
,
46

3
.

𝐵1 𝐵2

[1] https://www.researchgate.net/publication/346090311_Research_article_game_theory_problems_using_interval_parameters

Interval and affine software

+ INTLAB (INTerval LABoratory) – The Matlab/Octave toolbox for Reliable Computing (interval and

affine computation) (copyright)
Developed by Prof. Dr. Siegfried M. Rump form Institute for Reliable Computing of Hamburg University of Technology

+ Interval - The Octave based interval package for real-valued interval arithmetic (GPL-3.0+)
Developed by Oliver Heimlich

+ libaffa – C++ Affine Arithmetic library for GNU/Linux (GNU Lesser General Public License v2.1).
Developed by Olivier Gay, David Coeurjolly, Nathan Hurst

+ aaflib - an Affine Arithmetic C++ Library (free software)
Developed at the Institute of Microelectronic Systems in Hannover

+ YalAA (Yet Another Library for Affine Arithmetic)
Developed by Stefan Kiel from University of Duisburg-Essen

