Bankruptcy	Liability	Shapley value in constant-sum games	Liability problems, rules, games	Shapley value, Shapley rule	Conclusion
00000	000	000000000000	000	0000000	00

ON THE SHAPLEY VALUE OF LIABILITY GAMES

BASED ON JOINT WORK WITH PÉTER CSÓKA AND FERENC ILLÉS (CORVINUS)

Tamás Solymosi

Corvinus University of Budapest Department of Operations Research and Actuarial Sciences, Centre for Operations Research

Kempten Autumn Talks 2020.11.04.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Bankruptcy
 Liability
 Shapley value in constant-sum games
 Liability problems, rules, games
 Shapley value, Shapley rule
 Conclusion

 ••••••••
 •••••
 •••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••</t

BANKRUPTCY PROBLEMS FROM THE TALMUD

In the Talmud (Kethubot 93a) the following three "bankruptcy situations" and their "solutions" by Rabbi Nathan are recorded without any "explanation".

Supposedly there is some underlying "fairness principle".

What is that principle? (equal split, proportional to claims, ???)

How the allocations were computed?

These questions puzzled Talmudic scholars for centuries.

Aumann and Maschler (1985) gave plausible explanations using cooperative game theory.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Liability

Shapley value in constant-sum games

Liability problems, rules, games

Shapley value, Shapley rule

Conclusion

AUMANN & MASCHLER (JET, 1985)

Robert J. Aumann (1930-) Nobel Memorial Prize in Economics (2005)

Michael B. Maschler (1927-2008) Frederick W. Lanchester Prize (1995)

Barry O'Neill (MSS, 1982) investigated inheritance problems and Ibn Ezra's allocation rule. He associated with

- a bankruptcy situation $(E; d_1, \ldots, d_n)$ with $E \leq d(N) = \sum_{i=1}^n d_i$
- a bankruptcy game: $N = \{1, ..., n\}$ (player set)
 - $v(S) = \max\{0, E d(N \setminus S)\}$ for all $S \subseteq N$ (coalitional function).

Using Talmudic principles O'Neill (1982) extended Ibn Ezra's rule to a random order rule that is induced by the Shapley value of the related "pessimistic" bankruptcy game.

Aumann and Maschler (1985) applied the nucleolus to the related bankruptcy games.

Ε	<i>d</i> ₁	d ₂	d 3		1	2	3	12	13	23	123
100	100	200	300	\longrightarrow	0	0	0	0	0	0	100
200	100	200	300	\longrightarrow	0	0	0	0	0	100	200
300	100	200	300	\longrightarrow	0	0	0	0	100	200	300

BANKRUPTCY RULES VIA GAMES

The players who claim the whole estate are symmetric in the games and in the solutions. \implies The Talmud rule (i) ignores excessive claims; (ii) treats players with equal claims equally.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Graphics by Balázs Sziklai (Corvinus)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Graphics by Balázs Sziklai (Corvinus)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Graphics by Balázs Sziklai (Corvinus)

Bankruptcy	Liability ●○○	Shapley value in constant-sum games	Liability problems, rules, games	Shapley value, Shapley rule	Conclusion
LIAB	ILIT	Y PROBLEMS			

Insolvent firms (countries, households) often agree with their creditors to decrease the value of their liabilities. For sovereign defaults, about 30-40 % deficiency is documented by Benjamin and Wright (2009), D'Erasmo (2011), and Arslanalp and Henry (2005).

The question is how to distribute the asset value of the firm among the creditors and the firm itself.

Sturzenegger and Zettelmeyer (2007), Chatterjee and Eyigungor (2015) note that there is no settled theory for the renegotiations, but creditors may join ad hoc groups and try to force the firm to pay them first.

OUR APPROACH				
rule:	situation	\longrightarrow	allocation	
	\downarrow		\uparrow	
value:	game	\longrightarrow	payoff vector	

LIABILITY GAMES (CSÓKA AND HERINGS, GEB, 2019)

The firm and the creditors are the players, any group of them can form their coalitions.

The worth of a coalition: what they can guarantee for themselves, irrespective of what outsiders do.

Given a coalition and the complementary coalition, the firm first pays as much as possible to the creditors in his coalition (up to their total liability value), then the firm pays the leftover to the complementary coalition.

 \longrightarrow Formal definition comes later.

Model assumptions: there is no outside authority that could "force" the firm to pay out everything but "the pressure to pay" cannot be ignored either. The firm might try to "exclude" some of the creditors, but they can form clubs to protect their interests. The model tries to capture the "bargaining powers" in the negotiations.

Conclusion

Shapley value in constant-sum games Liability 000

Bankruptcv

Some background on liability games

Liability games are superadditive, but not additive, and constant-sum games: any coalition and its complement divide up the asset value. \implies The core of a liability game is empty unless the firm is solvent.

Csóka and Herings (2019) investigated the nucleolus of liability games, and proved (among other things) that the nucleolus allocation rule satisfies

- efficiency: the asset value is fully divided up among the players
- non-negativity: no creditor pays, the firm has limited liability
- liabilities boundedness: no creditor receives more than his claim
- monotonicity in claims: higher claims bring higher payments, but also higher deficiencies

The insolvent firm keeps a positive amount but not more than half of the asset value.

Here we investigate the Shapley allocation rule.

Bankruptcy	Liability	Shapley value in constant-sum games	Liability problems, rules, games	Shapley value, Shapley rule	Conclusion
TUG	AME	RS			

Transferable utility cooperative game (N, v)

- N is a non-empty, finite set of players
- $v: 2^N \to \mathbb{R}$ coalitional function with $v(\emptyset) = 0$

Game (N, v) is called

• unanimity game on
$$\emptyset \neq T \subseteq N$$
 if
 $v(S) = u_T(S) := \begin{cases} 1 & \text{if } S \supseteq T, \\ 0 & \text{otherwise.} \end{cases}$ for every $S \subseteq N$

Denote by \mathcal{G}^N the set of all games on fixed *N*. Let n = |N|.

REMARK

 \mathcal{G}^N is a linear vector space of dimension $2^n - 1$.

– game vector $\mathbf{v} \in \mathbb{R}^{2^N}$ must satisfy $\mathbf{v}(\emptyset) = 0$

- the $2^n - 1$ unanimity game vectors are linearly independent

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Bankruptcy	Liability	Shapley value in constant-sum games	Liability problems, rules, games	Shapley value, Shapley rule	Conclusion
00000	000	000000000000	000	0000000	00

VALUES FOR TU GAMES

A value on \mathcal{G}^N is a map $f: \mathcal{G}^N \to \mathbb{R}^N$.

We say that value f satisfies

- *linearity*: if f(αv + βw) = αf(v) + βf(w) holds for all α, β ∈ ℝ and v, w ∈ G^N.
- *efficiency*: if $\sum_{j \in N} f_j(v) = v(N)$ holds for all $v \in \mathcal{G}^N$.
- the equal treatment property: if $j, k \in N$ are symmetric players in game $v \in \mathcal{G}^N$, that is if $v(S \cup j) = v(S \cup k) \ \forall S \subseteq N \setminus \{j, k\}$, then $f_j(v) = f_k(v)$.
- the null player property: if $j \in N$ is a null player in game $v \in \mathcal{G}^N$, that is if $v(S \cup j) v(S) = 0 \ \forall S \subseteq N \setminus j$, then $f_j(v) = 0$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Shapley value in constant-sum games

Liability problems, rules, games

Shapley value, Shapley rule

Conclusion

LLOYD SHAPLEY

Liability

Lloyd Shapley (1923-2016)

Nobel Memorial Prize in Economics (2012)

 Bankrupty
 Liability
 Shapley value in constant-sum games
 Liability problems, rules, games
 Shapley value, Shaple

The Shapley value on \mathcal{G}^N

THEOREM (SHAPLEY, 1953)

The value $\phi : \mathcal{G}^N \to \mathbb{R}^N$ defined by

$$\phi_i(\mathbf{v}) = \sum_{\mathbf{S} \subseteq \mathbf{N} \setminus i} \gamma_{\mathbf{N}}(\mathbf{S}) [\mathbf{v}(\mathbf{S} \cup i) - \mathbf{v}(\mathbf{S})] \qquad (i \in \mathbf{N})$$

where
$$\gamma_N(S) = \frac{s!(n-1-s)!}{n!} = \frac{1}{n\binom{n-1}{s}}$$
 and $s = |S|, n = |N|,$

is the ONLY value on \mathcal{G}^N that satisfies linearity, efficiency, the equal teatment property and the null player property.

Note: $\{\gamma_N(S)\}_{S \subseteq N \setminus i}$ is a probability distribution on $2^{N \setminus i}$ for any $i \in N$. Interpretation: player *i* chooses partners randomly as follows:

- choose the number s of partners uniformly from $0, 1, \ldots, n-1$;
- **2** choose the set of partners *S* with |S| = s uniformly from $2^{N \setminus i}$.

Bankruptcy Liability

Shapley value in constant-sum games

Liability problems, rules, games

Shapley value, Shapley rule

Conclusion

SHAPLEY VALUE OF THE TALMUD GAMES

<i>E</i> =	= 10	0									
1	2	3	12	13	23	123		ϕ_1	ϕ_2	2	ϕ_{3}
0	0	0	0	0	0	100	<i>→</i>	100/3	100	/3	100/3
E =	= 20	0									
1	2	3	12	13	23	123		ϕ_1	Ģ	¢2	ϕ_{3}
0	0	0	0	0	100	200	_	100/	3 25	0/3	250/3
0	0	0	0	0	100	100	~	0	5	50	50
0	0	0	0	0	0	100		100/	3 10	0/3	100/3
E =	= 30	0									
1	2	3	12	13	23	123		ϕ_{1}	ϕ_2	ϕ_{3}	
0	0	0	0	100	200	300		50	100	150)
0	0	0	0	100	0	100		50	0	50	
0	0	0	0	0	200	200		0	100	100)

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Liability

Shapley value in constant-sum games

Liability problems, rules, games

Shapley value, Shapley rule

Conclusion

THE SHAPLEY VALUE: UNIQUENESS

$$\phi(\mathbf{v} = \sum_{\emptyset \neq T \subseteq N} \alpha_T u_T) = \sum_{\emptyset \neq T \subseteq N} \alpha_T \phi(u_T) \qquad \alpha_T = \sum_{\emptyset \neq R \subseteq T} (-1)^{|T \setminus R|} v(R)$$

EXAMPLE ($N = \{0, 1, 2\}$)

S	0	1	2	01	02	12	Ν		ϕ_0	ϕ_1	ϕ_2
V	<i>V</i> 0	<i>V</i> ₁	<i>V</i> 2	<i>V</i> 01	<i>V</i> ₀₂	<i>V</i> ₁₂	V _N				
И0	1	0	0	1	1	0	1	α_0	1	0	0
<i>u</i> ₁	0	1	0	1	0	1	1	α_1	0	1	0
<i>U</i> 2	0	0	1	0	1	1	1	α ₂	0	0	1
U ₀₁	0	0	0	1	0	0	1	α ₀₁	1/2	1/2	0
U ₀₂	0	0	0	0	1	0	1	α ₀₂	1/2	0	1/2
U ₁₂	0	0	0	0	0	1	1	α_{12}	0	1/2	1/2
<i>U</i> ₀₁₂	0	0	0	0	0	0	1	α ₀₁₂	1/3	1/3	1/3

200

Bankruptcy Liability

Shapley value in constant-sum games

Liability problems, rules, games

Shapley value, Shapley rule

Conclusion

NEUMANN AND MORGENSTERN (TGEB, 1944)

John von Neumann (1903-1957)

Oskar Morgenstern (1902-1977)

Bankruptcy	Liability	Shapley value in constant-sum games	Liability problems, rules, games	Shapley value, Shapley rule	Conclusion
00000	000	000000000000	000	0000000	00

CONSTANT-SUM GAMES

Game (N, v) is called

• constant-sum if $v(S) + v(N \setminus S) = v(N)$ for every $S \subseteq N$;

Denote by \mathcal{G}_{CS}^{N} the set of constant-sum games on fixed *N*.

REMARK

 \mathcal{G}_{CS}^{N} is a linear vector space of dimension $\leq 2^{n-1}$.

 game vector v ∈ ℝ^{2^N} must satisfy 2ⁿ⁻¹ independent equations v(Ø) + v(N \ Ø) = v(N) implies v(Ø) = 0.

REMARK

Unanimity game u_T is constant-sum if and only if |T| = 1 (a dictator game $u_{\{i\}}$ for some $i \in N$).

? Find a "suitable" basis for \mathcal{G}_{CS}^{N} .

A BASIS FOR CONSTANT-SUM GAMES

Arbitrarily choose a player, $0 \in N$. Let $C = N \setminus \{0\}$. Denote by $\mathcal{P}_0 = \{S \subseteq N : 0 \in S\}$ the set of partner coalitions of 0, and by $\mathcal{C}_0 = \{S \subseteq N : 0 \notin S\}$ the complement coalitions. Clearly, $|\mathcal{P}_0| = |\mathcal{C}_0| = 2^{n-1}$.

Define for $0 \in R \subsetneq N$ the constant-sum game $d^R \in \mathcal{G}_{CS}^N$ by

$$d^{R}(S) = \begin{cases} 1 & \text{if } S = R \\ -1 & \text{if } S = N \setminus R \\ 0 & \text{otherwise} \end{cases} \text{ for all } S \subseteq N.$$
(1)

For R = N, the constant-sum game $d^N \in \mathcal{G}_{CS}^N$ is defined as

$$d^{N}(S) = \begin{cases} 1 & \text{if } S = N \text{ or } 0 \notin S \neq \emptyset \\ 0 & \text{otherwise} \end{cases} \quad \text{for all } S \subseteq N.$$
 (2)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Liability

Shapley value in constant-sum games

Liability problems, rules, games

Shapley value, Shapley rule

Conclusion

3-PLAYER CONSTANT-SUM GAMES

EXAMPLE $(n = 3, N = \overline{0} \cup \overline{12})$

		F	° 0			\mathcal{C}_{0}					
S	Ū	01	02	N	Ø	1	2	12			
V	$V_{\overline{0}}$	<i>V</i> ₀₁	V_ <u>02</u>	V _N	0	$V_N - V_{\overline{02}}$	$V_N - V_{\overline{01}}$	$v_N - v_{\overline{0}}$			
$d^{\overline{0}}$	1	0	0	0	0	0	0	-1			
$d^{\overline{01}}$	0	1	0	0	0	0	-1	0			
$d^{\overline{02}}$	0	0	1	0	0	-1	0	0			
dN	0	0	0	1	0	1	1	1			

Trivially, for each $v \in \mathcal{G}_{CS}^{\overline{012}}$, the unique decomposition: $v = v_{\overline{0}} \cdot d^{\overline{0}} + v_{\overline{01}} \cdot d^{\overline{01}} + v_{\overline{02}} \cdot d^{\overline{02}} + v_N \cdot d^N$. By linearity, $\phi(v) = v_{\overline{0}} \cdot \phi(d^{\overline{0}}) + v_{\overline{01}} \cdot \phi(d^{\overline{01}}) + v_{\overline{02}} \cdot \phi(d^{\overline{02}}) + v_N \cdot \phi(d^N)$.

Shapley value in constant-sum games

Liability problems, rules, games

Shapley value, Shapley rule

Conclusion

A basis for constant-sum games /2

PROPOSITION

Liability

The games $d^R \in \mathcal{G}_{CS}^N$ $(R \in \mathcal{P}_0)$ form a basis of \mathcal{G}_{CS}^N , henceforth $\dim(\mathcal{G}_{CS}^N) = 2^{n-1}$. Moreover, $v(S) = \sum_{R \in \mathcal{P}_0} v(R) \cdot d^R(S)$ for all $S \subseteq N$ and $v \in \mathcal{G}_{CS}^N$. Consequently, by linearity of the Shapley value, $\phi(v) = \sum_{R \in \mathcal{P}_0} v(R) \cdot \phi(d^R)$.

Note: no null player in any of the basic games d^R ($R \in \mathcal{P}_0$). Efficiency and the equal treatment property only determine a value on d^R upto a parameter, say $f_0(d^R)$.

くりょう 小田 マイビット 日 うくの

Liability

Shapley value in constant-sum games

Liability problems, rules, games

Shapley value, Shapley rule

Conclusion

3-PLAYER CONSTANT-SUM GAMES /2

EXAMPLE ($n = 3, N = \overline{0} \cup \overline{12}$)

Let value f be linear, efficient, and satisfy equal treatment.

			F	° 0			•		
_	S	Ō	01	02	Ν				
_	V	$V_{\overline{0}}$	<i>V</i> ₀₁	V_ <u>02</u>	V _N	\rightarrow	$f_0(v)$	$f_1(v)$	$f_2(v)$
-	$d^{\overline{0}}$	1	0	0	0	<i>V</i> ₀	$f_0^{\overline{0}}$	$-f_{0}^{\overline{0}}/2$	$-f_{0}^{\overline{0}}/2$
	$d^{\overline{01}}$	0	1	0	0	<i>V</i> ₀₁	$f_0^{\overline{01}}$	$f_0^{\overline{01}}$	$-2f_{0}^{\overline{01}}$
	$d^{\overline{02}}$	0	0	1	0	V ₀₂	$f_0^{\overline{02}}$	$-2f_{0}^{\overline{02}}$	$f_0^{\overline{02}}$
_	d ^N	0	0	0	1	VN	f_0^N	$(1 - f_0^N)/2$	$(1 - f_0^N)/2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 Bankruptcy
 Liability
 Shapley value in constant-sum games
 Liability problems, rules, games
 Stapley value

 00000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</td

Shapley value, Shapley rule

Conclusion

THE SHAPLEY VALUE OF CONSTANT-SUM GAMES

PROPOSITION (SHAPLEY, 1953)

Let $v \in \mathbb{R}^{2^N}$ be constant-sum: $v(S) = v(N) - v(N \setminus S)$ for all $S \in 2^N$. The Shapley payoff to $i \in N$ is

$$b_i(\mathbf{v}) = -\mathbf{v}(\mathbf{N}) + 2\sum_{\mathbf{S} \subseteq \mathbf{N} \setminus i} \gamma_{\mathbf{N}}(\mathbf{S})\mathbf{v}(\mathbf{S} \cup i)$$

$$\phi_i(\mathbf{v}) = -\mathbf{v}(\mathbf{N}) + \frac{2}{n} \sum_{S \subseteq \mathbf{N} \setminus i} \frac{\mathbf{v}(S \cup i)}{\binom{n-1}{s}}$$

where s = |S|, n = |N|.

Note: the Shapley payoff to player *i* depends on the average values of the same-size coalitions containing *i*, no need to compute the marginal contributions of *i*.

Liability

Shapley value in constant-sum games ○○○○○○○○○○● Liability problems, rules, games

Shapley value, Shapley rule

Conclusion

SHAPLEY VALUE FOR 3-PLAYER CONSTANT-SUM GAMES

EXAMPLE ($n = 3, N = \overline{0} \cup \overline{12}$)

		F	%					
S	Ū	01	02	N				
V	$V_{\overline{0}}$	<i>V</i> ₀₁	$V_{\overline{02}}$	V _N	\longrightarrow	$\phi_0(v)$	$\phi_1(v)$	$\phi_2(v)$
$d^{\overline{0}}$	1	0	0	0	V ₀	2/3	-1/3	-1/3
$d^{\overline{01}}$	0	1	0	0	<i>V</i> ₀₁	1/3	1/3	-2/3
$d^{\overline{02}}$	0	0	1	0	V ₀₂	1/3	-2/3	1/3
d ^N	0	0	0	1	VN	-1/3	2/3	2/3

In formula,

$$\phi_0(\mathbf{v}) = \frac{2\mathbf{v}_{\overline{0}} + \mathbf{v}_{\overline{01}} + \mathbf{v}_{\overline{02}} - \mathbf{v}_N}{3} \quad \phi_i(\mathbf{v}) = \frac{-\mathbf{v}_{\overline{0}} + \mathbf{v}_{\overline{0i}} - 2\mathbf{v}_{\overline{0j}} + 2\mathbf{v}_N}{3} \quad (i \neq j)$$

Bankruptcy	Liability	Shapley value in constant-sum games	Liability problems, rules, games ●○○	Shapley value, Shapley rule	Conclusion				

LIABILITY PROBLEM

- $N = \{0, 1, \dots, c\}$ is the set of agents, where
 - 0 is a *firm* having *asset value* $A \ge 0$ and
 - a set of *creditors* $C = \{1, \ldots, c\}$, each with a *liability* $\ell_i \ge 0$

DEFINITION

A liability problem on $N = \{0\} \cup C$ is a pair $(A, \ell) \in \mathbb{R}_+ \times \mathbb{R}^C_+$ with $A \leq \ell(C) = \sum_{i \in C} \ell_i$.

Notation:

 $\begin{array}{ll} \mathcal{L}^{N} & \text{class of liability problems on } N = \{0\} \cup C \\ \ell_{S} = \ell(S) = \sum_{i \in S} \ell_{i} & \text{total liabilities for subset of creditors } S \subseteq C \\ \ell_{S}^{A} = \min\{A; \ell_{S}\} & \text{truncated total liabilities for creditor group } S \subseteq C \\ \ell_{i}^{A} = \min\{A; \ell_{i}\} & \text{truncated liability to creditor } i \in C \end{array}$

Bankruptcy	Liability	Shapley value in constant-sum games	Liability problems, rules, games	Shapley value, Shapley rule	Conclusion
00000	000	0000000000000	000	0000000	00

LIABILITY RULE

DEFINITION

A *liability rule* is a function that associates with each $(A, \ell) \in \mathcal{L}^N$ a unique payment vector $f = f(A, \ell) \in \mathbb{R}_+ \times \mathbb{R}^C_+$ satisfying

- Non-negativity. The firm has limited liability: f₀ ≥ 0, and no creditor should be asked to pay: f_i ≥ 0 for all i ∈ C,
- Liabilities boundedness. No creditor should be paid more than his claim: f_i ≤ ℓ_i for all i ∈ C, and
- Efficiency. The sum of payments should be equal to the asset value: $f_0 + \sum_{i \in C} f_i = A$.

Notice that the above three properties imply:

$$0 \le f_0 \le A$$
 and $0 \le f_i \le \ell_i^A \le \ell_i$ for all $i \in C$.

Bankruptcy	Liability	Shapley value in constant-sum games	Liability problems, rules, games ○○●	Shapley value, Shapley rule	Conclusion
_					

LIABILITY GAME

DEFINITION

On $N = \{0\} \cup C$, liability problem $(A, \ell) \in \mathcal{L}^N$ induce *liability game* $v \in \mathbb{R}^{2^N}$ defined for all $S \in 2^N$ as follows:

$$v(S) = \begin{cases} \min\{A; \ell(S \setminus \{0\})\}, & \text{if } 0 \in S, \\ \max\{0; A - \ell(C \setminus S)\}, & \text{if } 0 \notin S. \end{cases}$$

REMARK

$$v(\emptyset) = 0 = v(\{0\}), \quad 0 \le v(S) \le A \quad \forall S \subseteq N, \quad v(N) = A$$

 $i = 0$ null player iff $\ell_C = A$ $i \in C$ null player iff $\ell_i = 0$

Liability problems (A, ℓ) and (A, ℓ^A) induce the same liability game.

PROPOSITION (CSÓKA, HERINGS, 2019)

v constant-sum, superadditive, monotonic v additive if and only if $\ell(C) = A$, the firm is solvent. If $\ell(C) > A$ (the firm is insolvent), the core is empty. Bankruptcy

Liability problems, rules, games

Shapley value, Shapley rule Conclusion

THE SHAPLEY RULE (1, 2 CREDITORS)

EXAMPLE (n = 2) $\frac{S || v(S) || \phi_0 || \phi_1}{\overline{0} || 0 \cdot || 2 \cdot \frac{1}{2} = 1 || -1|} \phi_0 = 0; \quad \phi_1 = A$ $N || A \cdot || -1 + 2 \cdot \frac{1}{2} = 0 || 1|$

EXAMPLE $(n = 3; \ell_i^A = \min\{A, \ell_i\})$

S	v(S)	ϕ_0	ϕ_1	ϕ_2
ō	0.	$2 \cdot \frac{1}{3} = \frac{2}{3}$	- 1/3	- 1/3
01	ℓ_1^A .	$2 \cdot \frac{1}{6} = \frac{1}{3}$	1/3	- 2/3
02	ℓ_2^A .	$2 \cdot \frac{1}{6} = \frac{1}{3}$	- 2/3	1/3
Ν	<i>A</i> .	$-1 + 2 \cdot \frac{1}{3} = -\frac{1}{3}$	2/3	2/3

 $\phi_0 = rac{\ell_1^A + \ell_2^A - A}{3}; \qquad \phi_i = \phi_0 + (A - \ell_j^A) \qquad i
eq j \in C$

Bankruptcy Liability

Shapley value in constant-sum games

Liability problems, rules, games

Shapley value, Shapley rule 0000000

Conclusion

THE SHAPLEY RULE (3 CREDITORS)

EXAMPLE $(n = 4; \ell_i^A = \min\{A, \ell_i\}; \ell_{ij}^A = \min\{A, \ell_i + \ell_j\})$

S	<i>v</i> (<i>S</i>)		ϕ_{0}	ϕ_1	ϕ_2	ϕ_{3}
ō	0.	$2 \cdot \frac{1}{4} =$	3/6	- 1/6	- 1/6	- 1/6
01	ℓ_1^A .	$2 \cdot \frac{1}{12} =$	1/6	1/6	- 1/6	- 1/6
02	ℓ_2^A .	$2 \cdot \frac{1}{12} =$	1/6	- 1/6	1/6	- 1/6
03	ℓ_3^A .	$2 \cdot \frac{1}{12} =$	1/6	- 1/6	- 1/6	1/6
012	ℓ^A_{12} .	$2 \cdot \frac{1}{12} =$	1/6	1/6	1/6	- 3/6
013	ℓ^A_{13} .	$2 \cdot \frac{1}{12} =$	1/6	1/6	- 3/ ₆	1/6
023	ℓ^A_{23} .	$2 \cdot \frac{1}{12} =$	1/6	- 3/6	1/6	1/6
Ν	<i>A</i> .	$-1 + 2 \cdot \frac{1}{4} = -$	- 3/6	3/6	3/6	3/6

 $\phi_0 = \frac{\sum_i \ell_i^A + \sum_{ij} \ell_{ij}^A - 3A}{6}; \qquad \phi_i = \phi_0 + \frac{3A - \ell_j^A - \ell_k^A - 2\ell_{jk}^A}{3}$

< □ > < □ > < 亘 > < 亘 > < 亘 > < □ > < □ > <

Liability

Shapley value in constant-sum games

Liability problems, rules, games

Shapley value, Shapley rule

Conclusion

THE SHAPLEY RULE (4 CREDITORS)

EXAMPLE $(n = 5; \ell_{ijk}^A = \min\{A, \ell_i + \ell_j + \ell_k\})$

VP	0	ℓ_1^A	ℓ^A_2	ℓ^A_3	$\ell_4^{\textit{A}}$	ℓ ^A 12	ℓ ^A 13	ℓ ^A 14	ℓ^A_{23}	ℓ^A_{24}	ℓ^A_{34}	ℓ ^A 123	ℓ ^A 124	ℓ ^A 134	ℓ^A_{234}	Α
ϕ_0	2 5	$\frac{1}{10}$	$\frac{1}{10}$	<u>1</u> 10	$\frac{1}{10}$	$\frac{1}{15}$	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	<u>1</u> 15	$\frac{1}{10}$	<u>1</u> 10	<u>1</u> 10	$\frac{1}{10}$	$\frac{-3}{5}$
ϕ_1	$\frac{-1}{10}$	$\frac{1}{10}$	$\frac{-1}{15}$	$\frac{-1}{15}$	$\frac{-1}{15}$	$\frac{1}{15}$	$\frac{1}{15}$	$\frac{1}{15}$	$\frac{-1}{10}$	$\frac{-1}{10}$	$\frac{-1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{-2}{5}$	2 5
ϕ_2	$\frac{-1}{10}$	$\frac{-1}{15}$	$\frac{1}{10}$	$\frac{-1}{15}$	$\frac{-1}{15}$	$\frac{1}{15}$	$\frac{-1}{10}$	$\frac{-1}{10}$	<u>1</u> 15	$\frac{1}{15}$	$\frac{-1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	<u>-2</u> 5	$\frac{1}{10}$	2 5
ϕ_3	$\frac{-1}{10}$	$\frac{-1}{15}$	$\frac{-1}{15}$	$\frac{1}{10}$	$\frac{-1}{15}$	$\frac{-1}{10}$	$\frac{1}{15}$	$\frac{-1}{10}$	$\frac{1}{15}$	$\frac{-1}{10}$	$\frac{1}{15}$	$\frac{1}{10}$	$\frac{-2}{5}$	$\frac{1}{10}$	$\frac{1}{10}$	2 5
ϕ_4	$\frac{-1}{10}$	$\frac{-1}{15}$	$\frac{-1}{15}$	$\frac{-1}{15}$	$\frac{1}{10}$	$\frac{-1}{10}$	$\frac{-1}{10}$	<u>1</u> 15	$\frac{-1}{10}$	$\frac{1}{15}$	$\frac{1}{15}$	<u>-2</u> 5	$\frac{1}{10}$	<u>1</u> 10	$\frac{1}{10}$	2 5
$\phi_0 = rac{3\sum_i \ell_i^{\mathcal{A}} + 2\sum_{ij} \ell_{ij}^{\mathcal{A}} + 3\sum_{ijk} \ell_{ijk}^{\mathcal{A}} - 18\mathcal{A}}{30} \le rac{3}{5}\mathcal{A}$																

Liability

Shapley value in constant-sum games

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusion

PROPERTIES OF THE SHAPLEY RULE /1

The Shapley rule is a liability rule. Thus,

- it satisfies efficiency, non-negativity and (truncated) liabilities boundedness.
- as any liability rule, respects minimal rights of creditors, i.e. it satisfies φ_i ≥ max{0, A − ℓ(C \ i)} for any i ∈ C.
- as any rule induced by a solution of the associated liability game, ignores excessive parts of claims, i.e. φ(A, ℓ) = φ(A, ℓ^A).

Shapley value, Shapley rule Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

BOUNDS ON THE SHAPLEY PAYMENTS

For the firm

Bankruptcy

$$0 \leq \frac{n-2}{n} \min\{A, \min_{i \in C} \ell_i, \ell_C - A\} \leq \phi_0(A, \ell) \leq \frac{n-2}{n}A.$$

For creditor $i \in C$

$$0 \leq \frac{2}{n(n-1)}\ell_i^{\mathsf{A}} \leq \phi_i(\mathsf{A},\ell) \leq \ell_i^{\mathsf{A}}$$

All bounds are sharp.

Bankruptcy Liability

Shapley value in constant-sum games

PROPERTIES OF THE SHAPLEY RULE /2

 $(\textbf{A},\ell)\in\mathcal{L}^{N}$ a liability problem, ν the induced liability game.

PROPOSITION (ORDER PRESERVATION)

If $\ell_i \geq \ell_j$ for creditors $i, j \in C$, then $\phi_i \geq \phi_j$ and $\ell_i - \phi_i \geq \ell_j - \phi_j$.

COROLLARY (EQUAL TREATMENT)

If
$$\ell_i = \ell_j$$
 for creditors $i, j \in C$, then $\phi_i = \phi_j$.

PROPOSITION (SUPERMODULARITY)

Let (A, ℓ) and (A', ℓ) be such that $\ell(C) \ge A' > A$. If $\ell_i \ge \ell_j$ for creditors $i, j \in C$ then

$$\phi_i(\mathbf{A}',\ell) - \phi_i(\mathbf{A},\ell) \geq \phi_j(\mathbf{A}',\ell) - \phi_j(\mathbf{A},\ell).$$

Bankruptcy Liability

Shapley value in constant-sum games

Liability problems, rules, games

Shapley value, Shapley rule

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusion

PROPERTIES OF THE SHAPLEY RULE /3

PROPOSITION (LIABILITIES MONOTONICITY)

Let (A, ℓ) and (A, ℓ') be such that $\ell'_i > \ell_i$ for $i \in C$, and $\ell'_k = \ell_k$ for all $k \in C \setminus i$. Then

$$\phi_i(\boldsymbol{A},\ell') \geq \phi_i(\boldsymbol{A},\ell) + \frac{2}{n(n-1)}\min\{\ell'_i - \ell_i, \boldsymbol{A} - \ell^{\boldsymbol{A}}_i\}$$

Moreover, $\phi_0(\mathbf{A}, \ell') \ge \phi_0(\mathbf{A}, \ell)$.

PROPOSITION (ASSET MONOTONICITY)

Let (A, ℓ) and (A', ℓ) be such that $\ell(C) \ge A' > A$. Then for any creditor $i \in C$,

 $\phi_i(\mathbf{A}',\ell) \geq \phi_i(\mathbf{A},\ell).$

But, $\phi_0(A', \ell)$ can be higher / lower than $\phi_0(A, \ell)$.

COMPUTATIONAL COMPLEXITY OF THE SHAPLEY RULE

THEOREM

Liability

It is NP-hard to compute the Shapley-rule payment to the insolvent firm (from the parameters of the liability problem).

"Explanation": Already generating the liability game takes exponential time (in terms of the size of the liability problem). The Shapley value takes all marginal contributions into account with positive probabilities. Computing all marginal contributions takes expontial time (in terms of the size of the liability game).

OUR APPROACH liability problem \rightarrow Shapley allocation \downarrow \uparrow liability game \rightarrow Shapley value

Bankruptcy	Liability	Shapley value in constant-sum games	Liability problems, rules, games	Shapley value, Shapley rule	Conclusion
00000	000	0000000000000	000	0000000	•0

THANK YOU Questions?

Bankruptcy	Liability	Shapley value in constant-sum games	Liability problems, rules, games	Shapley value, Shapley rule	Conclusion
00000	000	000000000000	000	0000000	0•

SELECTED REFERENCES

Anderson, Ronald W., and Suresh Sundaresan, 1996, "Design and valuation of debt contracts," *The Review of Financial Studies*, 9 (1), 37–68.

Aumann, R.J., and M. Maschler, 1985, "Game theoretic analysis of a bankruptcy problem from the Talmud," *Journal of Economic Theory*, 36, 195–213.

Arslanalp, Serkan, and Peter Blair Henry, 2005, "Is debt relief efficient?," *The Journal of Finance*, 60 (2), 1017–1051.

Benjamin, David, and Mark L. J. Wright, 2009, "Recovery before redemption: A theory of delays in sovereign debt renegotiations," *Manuscript*.

Chatterjee, S., and B. Eyigungor (2015), "A seniority arrangement for sovereign debt," *American Economic Review*, *105*, 3740–3765.

D'Erasmo, Pablo, 2011, "Government reputation and debt repayment in emerging economies," *Manuscript.*

Eisenberg, L., and T.H. Noe, 2001, "Systemic risk in financial systems," *Management Science*, 47, 236–249.

Kornai, J., 1979, "Resource-constrained versus demand-constrained systems," *Econometrica: Journal of the Econometric Society*, 801–819.

O'Neill, B., 1982, "A problem of rights arbitration from the Talmud," *Mathematical Social Sciences*, *2*, 345–371.

Sturzenegger, F., and J. Zettelmeyer, 2007, Debt defaults and lessons from a decade of crises, MIT Press, Cambridge, MA.

Yue, Vivian Z., 2015, "Sovereign default and debt renegotiation," *Journal of international Economics*, 80, (2) 176–187.