New information fusion techniques and applications on image processing, classification and the computational brain

Javier Fernandez

Uppna.

Universidad Pública de Navarra

Kempten 2020 Nov 20, 2020

- 1 The necessity of fusing data
- 2 Data fusion functions
- 8 Pre-aggregations
- 4 The computational brain
- 6 Conclusions

1 The necessity of fusing data

- 2 Data fusion functions
- 8 Pre-aggregations
- 4 The computational brain
- 6 Conclusions

Too much information

Hadoop for Big Data

Deep Learning

Problem: How do we choose the architecture **Solution**: Use different architectures and fuse the results (ensembles)

Decision making

Ensembles

Science is made of data, as a house is made of bricks. But a set of data is not science, in the same way as a set of bricks is not a house.

H. Poincaré

Introduction

- 2 Data fusion functions
- 8 Pre-aggregations
- 4 The computational brain
- 6 Conclusions

Let $n \ge 2$. We call fusion function to any function $F : [0,1]^n \to [0,1]$.

We represent a set of data by one single value of the same nature.

• Unit interval \Rightarrow Not relevant.

Let $n \ge 2$. We call fusion function to any function $F : [0,1]^n \to [0,1]$.

We represent a set of data by one single value of the same nature.

- Unit interval \Rightarrow Not relevant.
- Other conditions \Rightarrow None.

A VERY GENERAL definition

A function $F : [a, b]^n \rightarrow [a, b]$ is increasing if for each x_1, \ldots, x_n , $y_1, \ldots, y_n \in [a, b]$ with $x_i \leq y_i$ for every $i = 1, \ldots, n$, it holds that:

$$F(x_1,\ldots,x_n) \leq F(y_1,\ldots,y_n).$$

Imposing conditions: Aggregation functions

Definition

An aggregation function is a fusion function $M : [0,1]^n \rightarrow [0,1]$ such that:

- 1 M is increasing;
- **2** $M(0, \ldots, 0) = 0;$
- **3** M(1, ..., 1) = 1.

Imposing conditions: Aggregation functions

Definition

An aggregation function is a fusion function $M : [0, 1]^n \rightarrow [0, 1]$ such that:

1 M is increasing;

2
$$M(0, \ldots, 0) = 0;$$

3 M(1, ..., 1) = 1.

Definition

An aggregation function M is idempotent if, for every $t \in [0, 1]$, $M(t, \dots, t) = t$.

• Our definition does not take into account, in principle, relations between data.

• We want to take such relation explicitely into account.

Let $N = \{1, \dots, n\}$. A function $\mathfrak{m} : 2^N \to [0, 1]$ is a discrete fuzzy measure if, for all $X, Y \subseteq N$, it satisfies the following properties: (m1) Increasingness: if $X \subseteq Y$, then $\mathfrak{m}(X) \leq \mathfrak{m}(Y)$; (m2) Boundary conditions: $\mathfrak{m}(\emptyset) = 0$ and $\mathfrak{m}(N) = 1$.

Let $\mathfrak{m}: 2^N \to [0,1]$ be a fuzzy measure. The discrete Choquet integral of $\mathbf{x} = (x_1, \ldots, x_n) \in [0,1]^n$ with respect to \mathfrak{m} is defined as a function $C_{\mathfrak{m}}: [0,1]^n \to [0,1]$, given by

$$C_{\mathfrak{m}}(\mathbf{x}) = \sum_{i=1}^{n} \left(x_{(i)} - x_{(i-1)} \right) \cdot \mathfrak{m} \left(A_{(i)} \right), \qquad (1)$$

where $(x_{(1)}, \ldots, x_{(n)})$ is an increasing permutation on the input **x**, that is, $0 \le x_{(1)} \le \ldots \le x_{(n)}$, with the convention that $x_{(0)} = 0$, and $A_{(i)} = \{(i), \ldots, (n)\}$ is the subset of indices of the n - i + 1largest components of **x**.

The Choquet integral is a continuous piecewise linear idempotent aggregation function

How can we determine the best aggregation function for a given problem??

Trial or...

Kempten 2020

Kempten, November 20, 2020

Image processing. Reduction

Construction of image reduction operators using averaging aggregation functions. D. Paternain, J. Fernandez, H. Bustince, R. Mesiar, G. Beliakov Fuzzy Sets and Systems, 261, 87-111 (2015)

What have we done

Penalty functions

Definition

A penalty function is a mapping

$$P:[a,b]^{n+1}\to\mathbb{R}^+=[0,\infty]$$

such that:

1
$$P(\mathbf{x}, y) = 0$$
 if $x_i = y$ for every $i = 1, \dots, n$;

2 $P(\mathbf{x}, y)$ is quasi-convex in y for every \mathbf{x} ; that is,

 $P(\mathbf{x}, \lambda \cdot y_1 + (1 - \lambda) \cdot y_2) \leq \max(P(\mathbf{x}, y_1), P(\mathbf{x}, y_2))$

On the definition of penalty functions in data aggregation. Humberto Bustince, Gleb Beliakov, Gracaliz Pereira Dimuro, Benjamin Bedregal, Radko Mesiar, Fuzzy Sets and Systems, 323 (15), 1-18 (2017)

Penalty functions and further

Penalty functions in a Cartesian product of lattices

Definition

A function $P_{\nabla}: ([0,1]^n)^m \times [0,1]^m \to [0,\infty[$ is a penalty function if, for every $\mathbf{X} = (\mathbf{x}^1, \dots, \mathbf{x}^m) \in ([0,1]^n)^m$ (with $\mathbf{x}^i = (x_1^i, \dots, x_n^i)$ for every $i \in \{1, \dots, m\}$) and for every $\mathbf{y} = (y_1, \dots, y_m) \in [0,1]^m$, it satisfies that:

P_∇(X, y) ≥ 0;
P_∇(X, y) = 0 if and only if x₁ⁱ = ··· = x_nⁱ = yⁱ for every i ∈ {1,..., m};

3 P_{∇} is convex in y_i or every $i \in \{1, \ldots, m\}$.

$$P_{\nabla}(\mathbf{X}, \mathbf{y}) = \sum_{q=1}^{m} \sum_{p=1}^{n} |x_p^q - y_q|^2$$

Consensus in multi-expert decision making problems using penalty functions defined over a Cartesian product of lattices. H. Bustince, E. Barrenechea, T. Calvo, S. James, G. Beliakov, Information Fusion, 17, 56-64 (2014)

Kempten 2020

Kempten, November 20, 2020

22 / 106

Set of aggregation functions (q = 5 chosen 3 by 3): \land, \lor , geometric mean, arithmetic mean, median

Image Reduction Using Means on Discrete Product Lattices. G. Beliakov, H. Bustince, D. Paternain IEEE Transactions on Image Processing 21 (3), 1070–1083 (2012).

Set of aggregation functions (q = 5 chosen 3 by 3): \land, \lor , geometric mean, arithmetic mean, median

The multi-expert decision making case

Kempten 2020

Kempten, November 20, 2020

25 / 106

- Penalty functions require strong analytical conditions (quasi-convexity).
- This can be softened if we use, for instance, moderate deviation functions.
- But...

HOW DO WE CHOOSE THE CORRECT ONE?

 Moderate deviation and restricted equivalence functions for measuring similarity between data. A.H. Altalhi, J.I. Forcen, M. Pagola, E. Barrenechea, H. Bustince, Z. Takác Information Sciences, 501, 19–29 (2019)

Introduction

- 2 Data fusion functions
- **3** Pre-aggregations
- 4 The computational brain
- 6 Conclusions

A different problem

The monotonicity problem

We are asking for monotonicity

But some fusion methods are not monotone:

- Statistical operators (the mode)
- Implication functions
- Similarity measures
- Distances

So then?

One step ahead: directional monotonicity

- Weak monotonicity along the direction $(1, \ldots, 1)$ (2015, T. Wilkin, G. Beliakov)
- Generalization: Let's consider any direction $\vec{r} \in \mathbb{R}^n$

Let \vec{r} be a real vector ($\vec{r} \neq 0$). A fusion function $F : [0,1]^n \to [0,1]$ is \vec{r} -increasing if for every $\mathbf{x} \in [0,1]^n$ and for every c > 0 such that $\mathbf{x} + c\vec{r} \in [0,1]^n$ it holds that:

$$F(\mathbf{x}+c\vec{r})\geq F(x)$$

Some examples:

- Every implication function $I : [0,1]^2 \rightarrow [0,1]$ is (-1,1)-increasing.
- F(x,y) = x max(0, (x y)²) is (1,1)-increasing and (0,1)-decreasing, but it is not (1,0)-increasing nor (1,0)-decreasing.

Directional monotonicity of fusion functions, H. Bustince, J. Fernandez, A. Kolesárová, R. Mesiar, European Journal of Operational Research 244 (1), 300-308 (2015).

Let $F : [0,1]^n \to [0,1]$ be a fusion function and let $\vec{r} \neq \vec{0}$ be an *n*-dimensional vector. F is said to be ordered directionally (OD) \vec{r} -increasing if for any $\mathbf{x} \in [0,1]^n$, for any c > 0 and for any permutation $\sigma : \{1,\ldots,n\} \to \{1,\ldots,n\}$ with $x_{\sigma(1)} \ge \cdots \ge x_{\sigma(n)}$ and such that

$$1 \ge x_{\sigma(1)} + cr_1 \ge \cdots \ge x_{\sigma(n)} + cr_n \ge 0$$

it holds that

$$F(\mathbf{x} + c\vec{r}_{\sigma^{-1}}) \geq F(\mathbf{x})$$

where $\vec{r}_{\sigma^{-1}} = (r_{\sigma^{-1}(1)}, \dots, r_{\sigma^{-1}(n)})$

• Let $F : [0,1]^n \to [0,1]$ be a constant fusion function. Then, for every vector $\vec{r} \in \mathbb{R}$, F is OD \vec{r} -increasing and OD \vec{r} -decreasing.
- Let $F : [0,1]^n \to [0,1]$ be a constant fusion function. Then, for every vector $\vec{r} \in \mathbb{R}$, F is OD \vec{r} -increasing and OD \vec{r} -decreasing.
- Let p > 0. $F(x, y) = |x y|^p$ is OD \vec{r} -increasing for every vector $\vec{r} = (r_1, r_2)$ such that $r_2 \le r_1$.

- Let $F : [0,1]^n \to [0,1]$ be a constant fusion function. Then, for every vector $\vec{r} \in \mathbb{R}$, F is OD \vec{r} -increasing and OD \vec{r} -decreasing.
- Let p > 0. $F(x, y) = |x y|^p$ is OD \vec{r} -increasing for every vector $\vec{r} = (r_1, r_2)$ such that $r_2 \le r_1$.
- $F(x, y) = \frac{1}{2}(1 + \max(x, y) 2\min(x, y))$ is OD (2, 1)-increasing.

- Let $F : [0,1]^n \to [0,1]$ be a constant fusion function. Then, for every vector $\vec{r} \in \mathbb{R}$, F is OD \vec{r} -increasing and OD \vec{r} -decreasing.
- Let p > 0. $F(x, y) = |x y|^p$ is OD \vec{r} -increasing for every vector $\vec{r} = (r_1, r_2)$ such that $r_2 \le r_1$.
- $F(x, y) = \frac{1}{2}(1 + \max(x, y) 2\min(x, y))$ is OD (2, 1)-increasing.
- $F(x, y) = 1 \max(x, y) + \frac{1}{2}\min(x, y)$ is OD (1, 2)-increasing.

What for?

OD monotone functions are useful in problems where the relative size of inputs is relevant.

Example: Edge detection.

Ordered directionally monotone functions. Justification and application.
 H. Bustince, E. Barrenechea, M. Sesma-Sara, J. Lafuente, G.P. Dimuro,
 R. Mesiar, A. Kolesárová, IEEE Transactions on Fuzzy Systems. 26 (4),
 2237-2250 (2018)

Ordered directional monotonicity in the construction of edge detectors. C. Marco-Detchart, H. Bustince, J. Fernandez, R. Mesiar, J. Lafuente, E. Barrenechea, J.M. Pintor, submitted to Fuzzy Sets and Systems.

Kempten, November 20, 2020

(a)Original image (b) Edge image

Specific detectors for each type of image What is an edge?

Definition

Big enough jump between the intensity of a pixel and those of its neighbours

Application to edge detection

a ₁₁	a ₁₂	a ₁₃	
a ₂₁	a ₂₂	a ₂₃	
a ₃₁	a ₃₂	a33	

We calculate the differences between the central value and each 8-neighbour

$$x_1 = |a_{22} - a_{11}|, x_2 = |a_{22} - a_{12}|, x_3 = |a_{22} - a_{13}|, x_4 = |a_{22} - a_{23}|,$$

 $x_5 = |a_{22} - a_{33}|, x_6 = |a_{22} - a_{32}|, x_7 = |a_{22} - a_{31}|, x_8 = |a_{22} - a_{21}|.$

 $x_{\sigma_{(1)}} \ge x_{\sigma_{(2)}} \ge x_{\sigma_{(3)}} \ge x_{\sigma_{(4)}} \ge x_{\sigma_{(5)}} \ge x_{\sigma_{(6)}} \ge x_{\sigma_{(7)}} \ge x_{\sigma_{(8)}}.$

Motivation

Kempten 2020

Construction of the feature image

where *G* is an aggregation function applied to the intensity jumps: $x_1 = |a_{22} - a_{11}|, x_2 = |a_{22} - a_{12}|, x_3 = |a_{22} - a_{13}|, x_4 = |a_{22} - a_{23}|,$ $x_5 = |a_{22} - a_{33}|, x_6 = |a_{22} - a_{32}|, x_7 = |a_{22} - a_{31}|, x_8 = |a_{22} - a_{21}|.$

Construction of the feature image

where *G* is an aggregation function applied to the intensity jumps: $x_1 = |a_{22} - a_{11}|, x_2 = |a_{22} - a_{12}|, x_3 = |a_{22} - a_{13}|, x_4 = |a_{22} - a_{23}|,$ $x_5 = |a_{22} - a_{33}|, x_6 = |a_{22} - a_{32}|, x_7 = |a_{22} - a_{31}|, x_8 = |a_{22} - a_{21}|.$

Motivation

(a) Fuzzy Morphology (Max-Min)

(b) Fuzzy Morphology (Schweizer-Sklar)

(c) Gravitational (S_M)

(d) OD

Figure: Gradient images obtained with different edge detectors.

Kempten 2020

Kempten, November 20, 2020

Motivation

- The performance has been done using 100 images of the test subset of the Berkeley Segmentation Dataset (BSDS500)¹
- The dataset comprises original images and ground truth images.
- Once the fuzzy edge image is obtained, we apply a thinning algorithm as Non-Maxima Suppression (NMS) (proposed by Canny, performs the suppression of all values along the line of the gradient that are not peak values.²)
- After that, the non-supervised algorithm of hysteresis is performed to binarize the image.³
- D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: Proc. of the 8th International Conference on Computer Vision, 2001, vol. 2, pp. 416–423.
- NMS has been performed using P. Kovesis' implementation in MATLAB. http://www.csse.uwa.edu.au/pk/research/matlabfns/
- R. Medina-Carnicer, R. Muñoz-Salinas, E. Yeguas-Bolivar, and L. Diaz-Mas. A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recognition, 44(6):1201-1211, 2011.
 P.L. Rosin, Unimodal thresholding, Pattern Recognition. 34(11), 2083-2096, 2001.

Proposition

Let m be a fuzzy measure. Then the Choquet integral

$$C_{\mathfrak{m}}(\mathbf{x}) = \sum_{i=1}^{n} \left(x_{(i)} - x_{(i-1)} \right) \cdot \mathfrak{m} \left(A_{(i)} \right), \qquad (2)$$

is OD $\vec{r}\text{-monotone}$ for every non-null n-dimensional vector \vec{r} such that

$$\sum_{i=1}^n r_i(\mathfrak{m}(A_{(i)}) - \mathfrak{m}(A_{(i+1)})) \ge 0$$

where $\mathfrak{m}(A_{(n+1)}) = 0$.

Proposition

Let p > 0 and let $G : [0,1]^n \to [0,1]$ be defined by

$$G(\mathbf{x}) = \begin{cases} (a + \sum_{i=1}^{n} b_i x_{\sigma(i)})^{\frac{1}{p}} & \text{if } 0 \le a + \sum_{i=1}^{n} b_i x_{\sigma(i)} \le 1\\ 0 & \text{if } a + \sum_{i=1}^{n} b_i x_{\sigma(i)} \le 0\\ 1 & \text{if } a + \sum_{i=1}^{n} b_i x_{\sigma(i)} \ge 1 \end{cases}$$

for some $a \in [0, 1]$ and $b_1, \ldots, b_n \in \mathbb{R}$ such that $0 \le a + b_1 + \cdots + b_n \le 1$. Then G is OD \vec{r} -increasing for every non null vector \vec{r} such that $\vec{b} \cdot \vec{r} \ge 0$.

The affine construction

Separability Criteria for the Evaluation of Boundary Detection Benchmarks. Lopez-Molina, C.; Bustince, H.; De Baets, B. IEEE TRANSACTIONS ON IMAGE PROCESSING 25 (3) 1047-1055 (2016)

 A gravitational approach to edge detection based on triangular norms Por: Lopez-Molina, C.; Bustince, H.; Fernandez, J.; et ál.. PATTERN RECOGNITION 43 (11) 3730-3741 (2010).

Application to edge detection

We calculate the differences between the central value and each 8-neighbour

 $x_1 = |a_{22} - a_{11}|, x_2 = |a_{22} - a_{12}|, x_3 = |a_{22} - a_{13}|, x_4 = |a_{22} - a_{23}|,$

 $x_5 = |a_{22} - a_{33}|, x_6 = |a_{22} - a_{32}|, x_7 = |a_{22} - a_{31}|, x_8 = |a_{22} - a_{21}|.$ We order these differences in a decreasing way:

$$x_{\sigma_{(1)}} \ge x_{\sigma_{(2)}} \ge x_{\sigma_{(3)}} \ge x_{\sigma_{(4)}} \ge x_{\sigma_{(5)}} \ge x_{\sigma_{(6)}} \ge x_{\sigma_{(7)}} \ge x_{\sigma_{(8)}}.$$

CASE 1. Application to edge detection

$$\vec{r} = (x_{\sigma_{(1)}}, x_{\sigma_{(2)}}, x_{\sigma_{(3)}}, x_{\sigma_{(4)}}, x_{\sigma_{(5)}}, x_{\sigma_{(6)}}, x_{\sigma_{(7)}}, x_{\sigma_{(8)}});$$

$$\vec{b} = \begin{cases} \left(\frac{x_{\sigma_{(1)}}}{\sum \atop i=1}^8 x_{\sigma_{(i)}}, \dots, \frac{x_{\sigma_{(7)}}}{\sum \atop i=1}^8 x_{\sigma_{(i)}}, \frac{x_{\sigma_{(8)}}}{\sum \atop i=1}^8 x_{\sigma_{(i)}}\right) & \text{ if } \sum_{i=1}^8 x_{\sigma_{(i)}} \neq 0\\ (0, \dots, 0) & \text{ otherwise.} \end{cases}$$

a = 0 and $\frac{1}{p} = 0.30$.

CASE 2. Application to edge detection

$$\vec{r} = (x_{\sigma_{(1)}}, x_{\sigma_{(2)}}, x_{\sigma_{(3)}}, x_{\sigma_{(4)}}, x_{\sigma_{(5)}}, x_{\sigma_{(6)}}, x_{\sigma_{(7)}}, x_{\sigma_{(8)}});$$

$$egin{aligned} ec{b} &= \left(rac{1}{8} \left(1 - \left| x_{\sigma_{(1)}} - \mathop{\mathrm{median}}_{i \in \{1, \dots, 8\}} \{x_i\}
ight|
ight), \dots \ & \dots, rac{1}{8} \left(1 - \left| x_{\sigma_{(8)}} - \mathop{\mathrm{median}}_{i \in \{1, \dots, 8\}} \{x_i\}
ight|
ight)
ight); \end{aligned}$$

a = 0 and $\frac{1}{p} = 0.30$.

Algorithm 1 Algorithm to construct a feature image using ODM functions

- **Input:** A normalized greyscale image I_G and a parameter p > 0 to build an ODM function *G* as in Corollary 8.
- **Output:** A feature image I_M .
 - 1: for each pixel (x, y) of I_G do
 - 2: Calculate the 8 values obtained by applying the absolute value of the difference between $\mathbb{I}_g(x, y)$ and its 8-neighbourhood;
 - 3: Order the eight values of step 2 in a decreasing way;
 - 4: Calculate the parameters *a*, \vec{r} y \vec{b} according to the vector obtained in step 3.
 - 5: Build the ODM function *G* as in Corollary 8 with the parameters obtained in step 4.
 - 6: Apply the ODM function G to the values obtained in step 3;
 - 7: Assign as intensity of the pixel (x, y) of I_M the value obtained in step 6.
 - 8: end for

Results obtained applying Algorithm 1 with different ODM functions.

Figure: Original image from BSDS [?] (100007) along with feature images obtained after applying Algorithm 1 with Case 1 and case 2.

In Fig. 3 we show the results obtained by applying Algorithm 1 with the two ODM functions, Case 1 and Case 2, to an original image, Fig. 3a.

Comparison of best and worst appoaches

Figure: Original images and the binary images obtained with ODM functions (Case 1, Case 2), Canny, Fuzzy Morphology (FM_{SS} , FM_{MM}) and Gravitational forces (G_{S_P} , G_{S_M}), after executing steps (S1) – (S4)

Motivation

The following measures of *Precision* (*PREC*), *Recall* (*REC*) and *F-measure* (F_{α}) are calculated from the confusion matrix:

$$PREC = \frac{TP}{TP + FP},$$
$$REC = \frac{TP}{TP + FN},$$
$$F_{\alpha} = \frac{PREC \cdot REC}{\alpha \cdot PREC + (1 - \alpha) \cdot REC}.$$

We consider the commonly used $\alpha = 0.5$; in that case, $F_{0.5}$ is the harmonic mean of *PREC* and *REC*.

Edge Detection Method	PREC	REC	F _{0.5}
C1	0.579	0.794	0.653
С2	0.602	0.765	0.654
FM _{SS}	0.572	0.719	0.615
С	0.687	0.618	0.631
G_{S_P}	0.649	0.649	0.650
G_{S_M}	0.661	0.665	0.641
SF	0.753	0.645	0.682

Table: Comparison of ODM functions approach with other edge detection methods as Gravitational, Fuzzy Morphology, Structured Forest and Canny in terms of *PREC*, *REC* and $F_{0.5}$.

		Edge Detection Methods							
	C1	FM _{SS}	SF	С	G_{S_P}	G_{S_M}			
Best	44	14	86	6	29	21			
Worst	17	86	23	39	16	19			
	С2	FM _{SS}	SF	С	G_{S_P}	G_{S_M}			
Best	50	16	86	6	27	15			
Worst	9	89	27	39	20	16			

Table: Comparison of best and worst approaches for 200 images of (BSDS500) in terms of $F_{0.5}$.

Fusing feature images

Algorithm 2 Algorithm to construct a consensus feature image **Input:** *n* feature images I_m with $m \in \{1, \ldots, n\}$. **Output:** A consensus feature image \mathfrak{O} .

1: Calculate the value of the intensity of each pixel in the consensus feature image \mathfrak{O} as the arithmetic mean of the pixels intensities in the same position of the feature images I_m with $m \in \{1,\ldots,n\}$.

Edge Detection Method	PREC	REC	F _{0.5}	
C1-C2	0.586	0.785	0.654	
C1-Canny	0.661	0.682	0.652	
C1-FM _{SS}	0.582	0.784	0.651	
C1-GSP	0.620	0.749	0.660	
C1-GSM	0.625	0.731	0.654	
C1-SF	0.715	0.724	0.705	
C2-Canny	0.668	0.669	0.650	
C2-FM _{SS}	0.602	0.754	0.649	
C2-GSP	0.628	0.731	0.657	
C2-GSM	0.635	0.715	0.653	
C2-SF	0.720	0.710	0.701	
Canny-FM _{SS}	0.675	0.650	0.644	
Canny-GSP	0.677	0.666	0.651	
Canny-GSM	0.674	0.648	0.641	
Canny-SF	0.728	0.671	0.683	
FM _{SS} -G _{Sp}	0.624	0.734	0.655	
FMSS-GSM	0.631	0.711	0.649	
FM _{SS} -SF	0.722	0.708	0.701	
GSB-GSM	0.654	0.687	0.650	
GS SF	0.722	0.688	0.687	
G _{SM} -SF	0.725	0.673	0.681	

Some comparisons: two methods

	Edge Detection Methods											
	*		FM _{SS}		С		GSP		GSM		SF	
	1	x	1	×	1	×	1	x	1	x	1	×
C1-C2	42	11	16	88	6	39	31	20	18	16	87	26
C1-Canny	18	2	26	94	6	39	41	21	18	16	91	28
C1-FM _{SS}	43	15	11	87	6	39	34	19	20	16	86	24
C1-GSp	43	6	22	93	7	39	18	18	19	16	91	28
C1-G5	30	4	22	93	6	39	33	21	17	15	92	28
C1-SF	97	1	20	96	4	39	26	21	15	16	38	27
C2-Canny	15	1	28	95	6	39	42	21	18	16	91	28
C2-FM _{SS}	38	11	14	88	6	39	37	19	17	15	88	28
C2-GSP	38	3	25	95	7	39	22	19	18	16	90	28
C2-GSM	26	2	24	94	6	39	36	21	15	16	93	28
C2-SF	96	1	20	96	4	39	29	21	15	16	36	27
Canny-FM55	16	1	29	96	3	38	42	21	20	16	90	28
Canny-GSp	15	3	28	96	7	38	37	20	19	15	94	28
Canny-GSM	9	5	28	96	7	37	43	21	19	13	94	28
Canny-SF	52	2	27	95	5	39	36	20	16	16	64	28
FMSS-GSP	42	9	23	91	6	38	19	18	19	16	91	28
FM _{SS} -G _{SM}	24	4	22	93	6	39	39	21	17	15	92	28
FM _{SS} -SF	98	1	20	96	4	39	28	21	16	16	34	27
GSD-GSM	18	6	26	95	7	38	37	19	17	14	95	28
GSD-SF	61	6	28	95	5	38	28	18	16	16	62	27
G _{SM} -SF	48	3	29	95	5	39	36	20	15	16	67	27

Edge detection using penalty functions

Figure: Original images (first row) and the binary images obtained with penalty functions Case 1 (second row) and Case 2 (third row)

Ordered directional monotonicity in the construction of edge detectors. C. Marco-Detchart, H. Bustince, R. Mesiar, J. Lafuente, E. Barrenechea, J.M. Pintor Fuzzy Sets and Systems, in press

Definition

An aggregation function is a function $M : [0,1]^n \rightarrow [0,1]$ such that:

1 M is increasing;

$$\textbf{2} \ M(0,\ldots,0) = 0$$

3 M(1,...,1) = 1.

Definition

A function $F : [0,1]^n \rightarrow [0,1]$ is said to be an n-ary pre-aggregation function if the following conditions hold:

(PA1) There exists a real vector $\vec{r} \in [0,1]^n$ $(\vec{r} \neq \vec{0})$ such that F is \vec{r} -increasing.

(PA2) F satisfies the boundary conditions: F(0,...,0) = 0and F(1,...,1) = 1.

If F is a pre-aggregation function with respect to a vector \vec{r} we just say that F is an \vec{r} -pre-aggregation function.

Preaggregation Functions: Construction and an Application. Giancarlo Lucca; José Antonio Sanz; Gracaliz Pereira Dimuro; Benjamín Bedregal; Radko Mesiar; Anna Kolesárová; Humberto Bustince, IEEE Transactions on Fuzzy Systems, 24(2), 260 - 272 (2016).

Pre-aggregation functions

(i) The mode, $Mod(x_1, \ldots, x_n)$ is $(1, \ldots, 1)$ -increasing, and it is a particular case of pre-aggregation function which is not an aggregation function.

Pre-aggregation functions

(i) The mode, $Mod(x_1, ..., x_n)$ is (1, ..., 1)-increasing, and it is a particular case of pre-aggregation function which is not an aggregation function.

(ii) $F(x, y) = x - (\max\{0, x - y\})^2$ is, for instance, (0, 1)-increasing, and it is an example of a pre-aggregation function which is not an aggregation function.

Pre-aggregation functions

- (i) The mode, $Mod(x_1, ..., x_n)$ is (1, ..., 1)-increasing, and it is a particular case of pre-aggregation function which is not an aggregation function.
- (ii) $F(x, y) = x (\max\{0, x y\})^2$ is, for instance, (0, 1)-increasing, and it is an example of a pre-aggregation function which is not an aggregation function.
- (iii) Take $\lambda \in]0,1[$. The weighted Lehmer mean $L_{\lambda}:[0,1]^2 \rightarrow [0,1]$, given by

$$L_{\lambda}(x,y) = \frac{\lambda x^2 + (1-\lambda)y^2}{\lambda x + (1-\lambda)y}$$

(with convention 0/0 = 0) is $(1 - \lambda, \lambda)$ -increasing, so it is a pre-aggregation function.

Theorem

If $A : [0,1]^n \to [0,1]$ is an aggregation function, then A is also a pre-aggregation function.

On some classes of directionally monotone functions. H. Bustince, R. Mesiar, A. Kolesárová, G.P. Dimuro, J. Fernandez, I. Diaz, S. Montes, Fuzzy Sets and Systems, in press.
• The idea is to modify some well-known aggregation functions.

• We arrive at the method from a specific problem.

A classification problem

Classification problem:

P examples: $X = \{x_1, ..., x_p\}$ n attributes: $\mathcal{A} = \{a_1, ..., a_n\}$ M classes: $C = \{c_1, ..., c_M\}$ Classifier:

 $D:\mathcal{A}\to C$

A classification problem

- R_1 : If Width is Short then Class = Versicolor
- R_2 : If Length is Long then Class = Virginica
- R_3 : If Width is Long then Class = Virginica
- R_4 : If Length is Average and Width is Average then Class = Virginica

A classification problem

 R_j : If x_{p1} is A_{j1} and ... and x_{pn} is A_{jn} then $Class = C_j$ with RW_j

- Fuzzy Reasoning Method:
 - 1 Matching degree: $\mu_{A_j}(x_p) = T(\mu_{A_{j1}}(x_{p1}), \dots, \mu_{A_{jn}}(x_{pn}))$
 - 2 Association degree:
 - $\mathsf{b}_j^k = h(\mu_{A_j}(x_p), RW_j^k)$
 - **3** Association degree by classes:

$$Y_k = f(b_j^k, b_j^k > 0)$$

Classification:

 $C_{best} = \arg \max_{k=1,\cdots,M} (Y_k)$

- k = 1, ..., M (n. classes).
- j = 1,..., L (n. rules).

4

O. Cordón, M. J. del Jesús, F. Herrera: A proposal on reasoning methods in fuzzy rule-based classification systems. Int. J. Approx. Reason., 20:1 (1999) 21–45.

- In step 3, usually the maximum is used...
- ... so we are ignoring information provided by almost every rule!!!
- What happens if we try to take into account this information?
- Let's use, for instance, Choquet integral...

Experimental setting

- 1 27 datasets selected form the KEEL repository
- 2 5 folder cross validation method
- 3 Accuracy rate to measure the performance
- 4 Fuzzy classifier: FARC-HD
 - Conjunction operator: product T-norm
 - Rule weight: certainty factor
 - 5 linguistic labels per variable
 - Minimum support: 0.05
 - Maximum confidence: 0.8
 - Maximum tree depth: 3
- 5 Statistical study
 - 1 Multiple comparisons: Friedman's Aligned ranks + Holm
 - 2 Pairwise comparisons: Wilcoxon

J. Alcala-Fdez, R. Alcala, F. Herrera, A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning, IEEE Transactions on Fuzzy Systems 19 (5) (2011) 857–872.

So we use the Choquet integral... with a "small" change:

The first idea

Theorem

Let $M : [0,1]^2 \rightarrow [0,1]$ be a function such that for all $x, y \in [0,1]$ it satisfies $M(x,y) \leq x$, M(x,1) = x, M(0,y) = 0 and M is (1,0)-increasing. Then, for any fuzzy measure \mathfrak{m} , $C_{\mathfrak{m}}^M$ is a pre-aggregation function which is idempotent and averaging, i.e.,

$$\min(x_1,\ldots,x_n) \leq C^M_\mathfrak{m}(x_1,\ldots,x_n) \leq \max(x_1,\ldots,x_n)$$

Experimental results

- Results of the 20 pre-aggregations considered
- Testing results

	Uniform	Dirac	Wmean	OWA	Power_GA
Product	78.68 (7)	78.01 (3)	78.12 (4)	77.33 (4)	78.55 (5)
Minimum	78.85 (7)	77.81 (0)	78.75 (7)	78.33 (10)	79.00 (7)
Łukasiewicz	76.61 (1)	77.81 (1)	76.92 (0)	76.44 (1)	78.14 (0)
Drastic	76.66 (0)	77.81 (0)	76.66(1)	76.66 (2)	76.66(1)
Nilpotent	76.88 (1)	77.81 (0)	76.76 (3)	76.60(1)	78.78 (5)
Hamacher	79.16 (8)	77.81 (1)	79.19 (10)	78.61 (7)	79.42 (7)

Statistical study

Aligned Friedman (APV Holm)

	Uniform	Dirac	WMean	OWA	Power_GA
Product	42.94 (0.21)	38.13	51.09 (0.002)	53.91 (0.003)	50.78 (0.004)
Minimum	45.13 (0.21)	43.38 (0.771)	42.13 (0.054)	35.24 (0.828)	41.20 (0.112)
Hamacher	50.22	41.18 (0.771)	29.78	33.85	31.02

Pre-aggregation Functions: Construction and an Application. G. Lucca, J. Sanz, G. Dimuro, B. Bedregal, R. Mesiar, A. Kolesárová, H. Bustince, IEEE Transactions on Fuzzy Systems 24 (2) 260–272 (2016).

Experimental results

- Comparison of the best pre-aggregation versus the winning rule FRM (maximum)
- Testing results

• Statistical study: Wilcoxon

aset	WK	Power_GA+Ham		Comparison	R^+	R^{-}	D- 1/2
р	84.89	82.99		Comparison	п	11	p-va
	82.08	82.72		Dormon CA Home vo WD	267 5	110.5	0.0
	84.30	85.96		Power_GA+Ham vs. wR	267.5	110.5	0.0
	68.50	72.13					
	55 22	55 59					
	75.61	80.07					
	63.11	63.10					
	71.22	72.21	in the second				
	79.46	79.49					
	94.67	93.33					
	69.80	68.60					
	79.60	79.76					
	94.42	95.35					
	94.52	94.34					
	82.01	83.83					
	75.38	73.44					
	90.00	88.79					
	07.51	/0.//					
	02.00	02.22					
	78 97	78.97					
	84 32	85 27					
	67.62	68.20					
	94.36	96.63					
	96.49	96.78					
	56.54	56.53					
	78.70	79.42					

If we take:

$$C_{\mathfrak{m}}^{M}(\mathbf{x}) = \sum_{i=1}^{n} M\left(x_{(i)} - x_{(i-1)}, \mathfrak{m}\left(A_{(i)}\right)\right),$$

we overcome the winning rule (the maximum).

We want more: let's go for FURIA and FARC !!!

WHAT ELSE CAN WE DO??

One step more

One step more

The second idea

To get a value smaller than 1 we do:

$$C_{\mathfrak{m}}^{(F_{1},F_{2})}(\mathbf{x}) = \min\left\{1, \sum_{i=1}^{n} F_{1}\left(x_{(i)}, \mathfrak{m}(A_{(i)})\right) - F_{2}\left(x_{(i-1)}, \mathfrak{m}(A_{(i)})\right)\right\},\$$

Conditions for F_1 and F_2 ?

Proposition *

Let $F_1, F_2 : [0,1]^2 \to [0,1]$ be two bivariate functions such that, for every $x, y \in [0,1]$, it holds that:

- 1 F_1 is (1,0)-increasing;
- **2** $F_1(0,x) = F_2(0,x);$
- **3** $F_1(0,1) = F_2(0,1) = 0;$
- **5** $F_1(x,y) \ge F_2(x,y).$

Then, for any fuzzy measure \mathfrak{m} , the function $C_{\mathfrak{m}}^{(F_1,F_2)}$ is well-defined and satisfies:

$$0 \leq C_{\mathfrak{m}}^{(F_1,F_2)}(\mathbf{x}) \leq 1$$

for every $\mathbf{x} \in [0,1]^n$.

Proposition

If we take:

•
$$F_1(x,y) = \sqrt{xy}$$

•
$$F_2(x,y) = \max(x+y-1,0)$$
,

then

$$C_{\mathfrak{m}}^{(F_1,F_2)}(\mathbf{x}) = \min\left\{1, \sum_{i=1}^n F_1\left(x_{(i)},\mathfrak{m}\left(A_{(i)}\right)\right) - F_2\left(x_{(i-1)},\mathfrak{m}\left(A_{(i)}\right)\right)\right\}$$

is a non-averaging pre-aggregation function.

Dataset	FURIA	AC	ProbSum	GM_L
appendicitis	87.71	83.03	85.84	84.89
balance	83.68	85.92	87.20	89.76
banana	88.57	85.30	84.85	85.23
bands	69.40	68.28	68.82	70.49
bupa	70.14	67.25	61.74	66.67
cleveland	56.57	56.21	59.25	58.57
contraceptive	54.17	53.16	52.21	53.50
ecoli	80.06	82.15	80.95	84.53
glass	72.91	65.44	64.04	64.99
haberman	72.55	73.18	69.26	73.18
hayes-roth	81.00	77.95	77.95	79.43
ion	89.75	88.90	88.32	89.75
iris	94.00	94.00	95.33	94.67
led7digit	71.80	69.60	69.20	69.60
magic	80.65	80.76	80.39	80.18
newthyroid	94.88	94.88	94.42	96.28
pageblocks	95.25	95.07	94.52	95.98
penbased	92.45	92.55	93.27	92.64
phoneme	85.90	81.70	82.51	82.44
pima	76.17	74.74	75.91	75.26
ring	85.54	90.95	90.00	90.41
saheart	70.33	68.39	69.69	70.56
satimage	82.27	79.47	80.40	79.47
segment	97.32	93.12	92.94	92.86
shuttle	99.68	95.59	94.85	97.33
sonar	78.90	78.36	82.24	83.23
spectfheart	77.88	77.88	77.90	80.12
titanic	78.51	78.87	78.87	78.87
twonorm	88.11	90.95	90.00	91.76
vehicle	70.21	68.56	68.09	68.67
wine	93.78	96.03	94.92	96.03
wisconsin	96.63	96.63	97.22	96.34
yeast	58.22	58.96	59.03	58.96
Mean	81.06	80.12	80.07	80.99

Generalizations of the Choquet integral

Improving the performance of fuzzy rule-based classification systems based on a non-averaging generalization of CC-integrals named C_{F1F2}-integrals,

- Giancarlo Lucca; Gracaliz Pereira Dimuro; Javier Fernandez; Humberto Bustince; Benjamín Bedregal; José Antonio Sanz. IEEE Transactions on Fuzzy Systems, 27, 124-134 (2018).
- The state-of-art of the generalizations of the Choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functions, Graa liz Pereira Dimuro, Javier Fernandez, Benjamin Bedregal, Radko Mesiar, Jose Antonio Sanz, Giancarlo Lucca, Humberto Bustince, Information Fusion, 57, 27–43, (2020).
- A generalization of the Choquet integral defined in terms of the Möbius transform. Javier Fernandez, Humberto Bustince, Lubomira Horánska, Radko Mesiar, Andrea Stupnánová. IEEE Transactions on Fuzzy Systems, in press.

- Introduction
- 2 Data fusion functions
- 8 Pre-aggregations
- 4 The computational brain
- 6 Conclusions

We have a set of possible functions to fuse data, which works very well in some specific problems

Can we find another types of problems where it can be useful?

Consider the problem of determining whether a subject is thinking of moving the left or the right hand.

The case of the computational brain

Consider the problem of determining whether a subject is thinking of moving the left or the right hand.

Classification problem with two classes

Not appropriate for deep learning!

How can we do it

How can we do it

Subject no.	left-hand movement imagery trials	right-hand movement imagery trials
1	85	75
2	85	75
3	82	78
4	83	77
5	74	86

How can we do it

Kempten 2020

Kempten, November 20, 2020

87 / 106

- 32 EEG signals are collected.
- The signals are preprocessed with FFT to get features in five bands.
- Common spatial pattern is applied to get well-separated sub-components.

We use three classifiers:

- Lineal discriminant analysis.
- Quadratic discriminant analysis.
- kNN (with k = 9)

The algorithm

STRUCTURE OF THE ALGORITHM:

Multimodal Fuzzy Fusion for Enhancing the Motor-Imagery-based Brain Computer Interface, Li-Wei Ko, Yi-Chen Lu, Humberto Bustince, Yu-Cheng Chang, Yang Chang, Javier Fernandez, Yu-Kai Wang, Jose Antonio Sanz, Gracaliz Pereira Dimuro, Chin-Teng Lin, IEEE Computational Intelligence Magazine 14 (1) 96–106 (2019)

Kempten 2020

Kempten, November 20, 2020

STRUCTURE OF THE ALGORITHM:

We make two steps:

Fuse the results for each band and each classifier.
Fuse the global result of each classifier.

We use aggregation and pre-aggregation functions to fuse the results of each classifier

- M-C1: Choquet.
- M-C2: C_F integral with F the Hamacher t-norm:

$$F(x,y) = \begin{cases} 0 & \text{if } x = y = 0\\ \frac{xy}{x+y-xy} & \text{otherwise.} \end{cases}$$

• M-C3: C_{F1F2} with F1 = F2 = min.

Comparison of the individual classifiers

Comparison of the individual classifiers

What else can we do?

Discrete Sugeno integral $S_{\mathfrak{m}} \colon [0,1]^n o [0,1]$ can be written as

$$S_{\mathfrak{m}}(\mathbf{x}) = \bigvee_{i=1}^{n} \min \left\{ x_{(i)}, \mathfrak{m} \left(A_{(i)} \right) \right\}.$$

What happens if we replace the minimum by another aggregation function?

Discrete Sugeno integral $S_{\mathfrak{m}} \colon [0,1]^n o [0,1]$ can be written as

$$S_{\mathfrak{m}}(\mathbf{x}) = \bigvee_{i=1}^{n} \min \left\{ x_{(i)}, \mathfrak{m} \left(A_{(i)} \right) \right\}.$$

What happens if we replace the minimum by another aggregation function?

$$S_{\mathfrak{m}}^{M}(\mathbf{x}) = \bigvee_{i=1}^{n} M\left(x_{(i)}, \mathfrak{m}\left(A_{(i)}\right)\right).$$
(3)

Proposition

Let $M: [0,1]^2 \rightarrow [0,1]$ be a function increasing in the first variable and let for each $y \in [0,1]$, M(0,y) = 0 and M(1,1) = 1. Then S_m^M defined in (3) is a pre-aggregation function for any fuzzy measure m. We use aggregation and pre-aggregation functions to fuse the results of each classifier

- M-S1: Sugeno.
- M-S2: S^M integral with M the Hamacher t-norm:

$$F(x,y) = \begin{cases} 0 & \text{if } x = y = 0\\ \frac{xy}{x+y-xy} & \text{otherwise.} \end{cases}$$

• M-S3: S^M integral with M given by:

$$M(x,y) = x|2y-1|$$

Computational brain

Comparison of results:

Performance of fuzzy and non-fuzzy results

Computational brain

Comparison of results:

Kempten 2020

Kempten, November 20, 2020

99 / 106

Computational brain

Comparison of results:

Multimodal Fuzzy Fusion for Enhancing the Motor-Imagery-based Brain Computer Interface, Li-Wei Ko, Yi-Chen Lu, Humberto Bustince, Yu-Cheng Chang, Yang Chang, Javier Fernandez, Yu-Kai Wang, Jose Antonio Sanz, Gracaliz Pereira Dimuro, Chin-Teng Lin, IEEE Computational Intelligence Magazine,14 (1), 96–106 (2019)

And for a harder problem?

- Benchmark with 4 classes: left hand, right hand, foot, tongue.
- 288 trials, 72 per class
- 22 channels per signal.

- Introduction
- 2 Data fusion functions
- 8 Pre-aggregations
- 4 The computational brain
- **5** Conclusions

- We have explained possible ways of generalizing aggregation functions.
- We have discussed in particular how these functions can be obtained in terms of Choquet and Sugeno integrals.
- We have seen the applicability of our results in classification problems, in particular in the computational brain.

- Data fusion based on Choquet and Sugeno integrals improves the results.
- Only with the band α , accuracy is higher than 80
- This improves applicability for patients with communication difficulties.

Many thanks!!!!