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Too much information
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Hadoop for Big Data
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Deep Learning
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Deep Learning

Problem: How do we choose the architecture
Solution: Use different architectures and fuse the results
(ensembles)
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Decision making

Decision making

Ensembles
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An inspiring sentence

Science is made of data, as a house is made of
bricks. But a set of data is not science, in the same
way as a set of bricks is not a house.

H. Poincaré
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A simple idea

Definition
Let n ≥ 2. We call fusion function to any function
F : [0, 1]n → [0, 1].

We represent a set of data by one single value of the same nature.
• Unit interval ⇒ Not relevant.

• Other conditions ⇒ None.

A VERY GENERAL definition
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Imposing conditions: monotonicity

Definition

A function F : [a, b]n → [a, b] is increasing if for each x1, . . . , xn,
y1, . . . , yn ∈ [a, b] with xi ≤ yi for every i = 1, . . . , n, it holds that:

F (x1, . . . , xn) ≤ F (y1, . . . , yn).
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Imposing conditions: Aggregation functions

Definition
An aggregation function is a fusion function M : [0, 1]n → [0, 1]
such that:

1 M is increasing;
2 M(0, . . . , 0) = 0;
3 M(1, . . . , 1) = 1.

Definition
An aggregation function M is idempotent if, for every t ∈ [0, 1],
M(t, · · · , t) = t.

Kempten 2020 Kempten, November 20, 2020 12 / 106



Imposing conditions: Aggregation functions

Definition
An aggregation function is a fusion function M : [0, 1]n → [0, 1]
such that:

1 M is increasing;
2 M(0, . . . , 0) = 0;
3 M(1, . . . , 1) = 1.

Definition
An aggregation function M is idempotent if, for every t ∈ [0, 1],
M(t, · · · , t) = t.

Kempten 2020 Kempten, November 20, 2020 12 / 106



Relevant examples

• Our definition does not take into account, in principle,
relations between data.

• We want to take such relation explicitely into account.
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Linking data: Fuzzy measures

Definition

Let N = {1, · · · , n}. A function m : 2N → [0, 1] is a discrete fuzzy
measure if, for all X ,Y ⊆ N, it satisfies the following properties:

(m1) Increasingness: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.
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The key example: Choquet integral

Definition

Let m : 2N → [0, 1] be a fuzzy measure. The discrete Choquet
integral of x = (x1, . . . , xn) ∈ [0, 1]n with respect to m is defined as
a function Cm : [0, 1]n → [0, 1], given by

Cm(x) =
n∑

i=1

(
x(i) − x(i−1)

)
·m

(
A(i)

)
, (1)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the input x,

that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0,
and A(i) = {(i), . . . , (n)} is the subset of indices of the n − i + 1
largest components of x.

The Choquet integral is a continuous piecewise linear idempotent
aggregation function
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An interesting question

How can we determine the best aggregation function for a given
problem??

Trial or...
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Image processing. Reduction
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Image processing. Reduction

Construction of image reduction operators using averaging aggregation
functions. D. Paternain, J. Fernandez, H. Bustince, R. Mesiar, G. Beliakov Fuzzy
Sets and Systems, 261, 87-111 (2015)

Kempten 2020 Kempten, November 20, 2020 18 / 106



What have we done
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Penalty functions

Definition

A penalty function is a mapping

P : [a, b]n+1 → R+ = [0,∞]

such that:
1 P(x, y) = 0 if xi = y for every i = 1, · · · , n;
2 P(x, y) is quasi-convex in y for every x; that is,

P(x, λ · y1 + (1− λ) · y2) ≤ max(P(x, y1),P(x, y2))

Aggregation functions based on penalties. Tomasa Calvo, Gleb Beliakov, Fuzzy
Sets and Systems, 161 (10), 1420-1436 (2010)

On the definition of penalty functions in data aggregation. Humberto Bustince,
Gleb Beliakov, Gracaliz Pereira Dimuro, Benjamin Bedregal, Radko Mesiar,
Fuzzy Sets and Systems, 323 (15), 1-18 (2017)
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Penalty functions and further
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Penalty functions in a Cartesian product of lattices
Definition
A function P∇ : ([0, 1]n)m × [0, 1]m → [0,∞[ is a penalty function
if, for every X = (x1, . . . , xm) ∈ ([0, 1]n)m (with xi = (x i

1, . . . , x i
n)

for every i ∈ {1, . . . ,m}) and for every y = (y1, . . . , ym) ∈ [0, 1]m,
it satisfies that:

1 P∇(X, y) ≥ 0;
2 P∇(X, y) = 0 if and only if x i

1 = · · · = x i
n = y i for every

i ∈ {1, . . . ,m};
3 P∇ is convex in yi or every i ∈ {1, . . . ,m}.

P∇(X, y) =
m∑

q=1

n∑
p=1

|xq
p − yq|2

Consensus in multi-expert decision making problems using penalty functions
defined over a Cartesian product of lattices. H. Bustince, E. Barrenechea, T.
Calvo, S. James, G. Beliakov. Information Fusion, 17, 56-64 (2014)
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An example

Set of aggregation functions (q = 5 chosen 3 by 3): ∧,∨,
geometric mean, arithmetic mean, median

Image Reduction Using Means on Discrete Product Lattices. G. Beliakov, H.
Bustince, D. Paternain IEEE Transactions on Image Processing 21 (3),
1070–1083 (2012).

Kempten 2020 Kempten, November 20, 2020 23 / 106



An example
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The multi-expert decision making case
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Some difficulties

• Penalty functions require strong analytical conditions
(quasi-convexity).

• This can be softened if we use, for instance, moderate
deviation functions.

• But...
HOW DO WE CHOOSE THE CORRECT ONE?

Moderate deviation and restricted equivalence functions for measuring similarity
between data. A.H. Altalhi, J.I. Forcen, M. Pagola, E. Barrenechea, H. Bustince,
Z. Takác Information Sciences, 501, 19–29 (2019)
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A different problem
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The monotonicity problem

We are asking for monotonicity

But some fusion methods are not monotone:
• Statistical operators (the mode)

• Implication functions

• Similarity measures

• Distances

So then?

Kempten 2020 Kempten, November 20, 2020 29 / 106



One step ahead: directional monotonicity

• Weak monotonicity along the direction (1, . . . , 1) (2015, T.
Wilkin, G. Beliakov)

• Generalization: Let’s consider any direction ~r ∈ Rn
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The formal definition

Definition
Let ~r be a real vector (~r 6= 0). A fusion function F : [0, 1]n → [0, 1]
is ~r -increasing if for every x ∈ [0, 1]n and for every c > 0 such that
x + c~r ∈ [0, 1]n it holds that:

F (x + c~r) ≥ F (x)

Some examples:
• Every implication function I : [0, 1]2 → [0, 1] is
(−1, 1)-increasing.

• F (x , y) = x −max(0, (x − y)2) is (1, 1)-increasing and
(0, 1)-decreasing, but it is not (1, 0)-increasing nor
(1, 0)-decreasing.

Directional monotonicity of fusion functions, H. Bustince, J. Fernandez, A.
Kolesárová, R. Mesiar, European Journal of Operational Research 244 (1),
300-308 (2015).
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Even further: ordered directionally monotone functions

Definition

Let F : [0, 1]n → [0, 1] be a fusion function and let ~r 6= ~0 be an
n-dimensional vector. F is said to be ordered directionally (OD) ~r -
increasing if for any x ∈ [0, 1]n, for any c > 0 and for any
permutation σ : {1, . . . , n} → {1, . . . , n} with xσ(1) ≥ · · · ≥ xσ(n)
and such that

1 ≥ xσ(1) + cr1 ≥ · · · ≥ xσ(n) + crn ≥ 0

it holds that
F (x + c~rσ−1) ≥ F (x)

where ~rσ−1 = (rσ−1(1), . . . , rσ−1(n))
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Some examples...

• Let F : [0, 1]n → [0, 1] be a constant fusion function. Then,
for every vector ~r ∈ R, F is OD ~r -increasing and OD
~r -decreasing.

• Let p > 0. F (x , y) = |x − y |p is OD ~r -increasing for every
vector ~r = (r1, r2) such that r2 ≤ r1.

• F (x , y) = 1
2(1+max(x , y)− 2min(x , y)) is OD

(2, 1)-increasing.

• F (x , y) = 1−max(x , y) + 1
2 min(x , y) is OD (1, 2)-increasing.
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What for?
OD monotone functions are useful in problems where the relative
size of inputs is relevant.
Example: Edge detection.

Ordered directionally monotone functions. Justification and application.
H. Bustince, E. Barrenechea, M. Sesma-Sara, J. Lafuente, G.P. Dimuro,
R. Mesiar, A. Kolesárová, IEEE Transactions on Fuzzy Systems. 26 (4),
2237-2250 (2018)

Ordered directional monotonicity in the construction of edge detectors. C.
Marco-Detchart, H. Bustince, J. Fernandez, R. Mesiar, J. Lafuente, E.
Barrenechea, J.M. Pintor, submitted to Fuzzy Sets and Systems.
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Motivation

(a)Original image (b) Edge image

Specific detectors for each type of image
What is an edge?

Definition
Big enough jump between the intensity of a pixel and those of its
neighbours
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Application to edge detection

We calculate the differences between the central value and each
8-neighbour

x1 = |a22 − a11|, x2 = |a22 − a12|, x3 = |a22 − a13|, x4 = |a22 − a23|,

x5 = |a22 − a33|, x6 = |a22 − a32|, x7 = |a22 − a31|, x8 = |a22 − a21|.

xσ(1) ≥ xσ(2) ≥ xσ(3) ≥ xσ(4) ≥ xσ(5) ≥ xσ(6) ≥ xσ(7) ≥ xσ(8) .
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Motivation

(a) Original (b) Fuzzy edge image Block diagram

(c) NMS (d) Binary edge image

Figure: Sequence of the proposed edge detector

Kempten 2020 Kempten, November 20, 2020 37 / 106



Construction of the feature image

where G is an aggregation function applied to the intensity jumps:
x1 = |a22 − a11|, x2 = |a22 − a12|, x3 = |a22 − a13|, x4 = |a22 − a23|,
x5 = |a22 − a33|, x6 = |a22 − a32|, x7 = |a22 − a31|, x8 = |a22 − a21|.
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Motivation

(a) Fuzzy Morphology (Max-Min) (b) Fuzzy Morphology (Schweizer-Sklar)

(c) Gravitational (SM ) (d) OD

Figure: Gradient images obtained with different edge detectors.
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Motivation

• The performance has been done using 100 images of the test subset
of the Berkeley Segmentation Dataset (BSDS500)1

• The dataset comprises original images and ground truth images.
• Once the fuzzy edge image is obtained, we apply a thinning

algorithm as Non-Maxima Suppression (NMS) (proposed by Canny,
performs the suppression of all values along the line of the gradient
that are not peak values.2)

• After that, the non-supervised algorithm of hysteresis is performed
to binarize the image.3

• D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its
application to evaluating segmentation algorithms and measuring ecological statistics, in: Proc. of
the 8th International Conference on Computer Vision, 2001, vol. 2, pp. 416–423.

• NMS has been performed using P. Kovesis’ implementation in MATLAB.
http://www.csse.uwa.edu.au/pk/research/matlabfns/

• R. Medina–Carnicer, R. MuÃ±oz–Salinas, E. Yeguas–Bolivar, and L. Diaz–Mas. A novel method to
look for the hysteresis thresholds for the Canny edge detector. Pattern Recognition,
44(6):1201–1211, 2011.
P.L. Rosin, Unimodal thresholding. Pattern Recognition. 34(11), 2083-2096, 2001.
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The affine construction

Proposition
Let m be a fuzzy measure. Then the Choquet integral

Cm(x) =
n∑

i=1

(
x(i) − x(i−1)

)
·m

(
A(i)

)
, (2)

is OD ~r -monotone for every non-null n-dimensional vector ~r such
that

n∑
i=1

ri(m(A(i))−m(A(i+1))) ≥ 0

where m(A(n+1)) = 0.
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The affine construction

Proposition

Let p > 0 and let G : [0, 1]n → [0, 1] be defined by

G(x) =


(a +

∑n
i=1 bixσ(i))

1
p if 0 ≤ a +

∑n
i=1 bixσ(i) ≤ 1

0 if a +
∑n

i=1 bixσ(i) ≤ 0
1 if a +

∑n
i=1 bixσ(i) ≥ 1

for some a ∈ [0, 1] and b1, . . . , bn ∈ R such that
0 ≤ a + b1 + · · ·+ bn ≤ 1. Then G is OD ~r -increasing for every
non null vector ~r such that ~b ·~r ≥ 0.
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The affine construction

• Separability Criteria for the Evaluation of Boundary Detection Benchmarks. Lopez-Molina, C.;
Bustince, H.; De Baets, B. IEEE TRANSACTIONS ON IMAGE PROCESSING 25 (3) 1047-1055
(2016)

• A gravitational approach to edge detection based on triangular norms Por: Lopez-Molina, C.;
Bustince, H.; Fernandez, J.; et ál.. PATTERN RECOGNITION 43 (11) 3730-3741 (2010).
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Application to edge detection

We calculate the differences between the central value and each
8-neighbour

x1 = |a22 − a11|, x2 = |a22 − a12|, x3 = |a22 − a13|, x4 = |a22 − a23|,

x5 = |a22 − a33|, x6 = |a22 − a32|, x7 = |a22 − a31|, x8 = |a22 − a21|.

We order these differences in a decreasing way:

xσ(1) ≥ xσ(2) ≥ xσ(3) ≥ xσ(4) ≥ xσ(5) ≥ xσ(6) ≥ xσ(7) ≥ xσ(8) .
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CASE 1. Application to edge detection

~r = (xσ(1) , xσ(2) , xσ(3) , xσ(4) , xσ(5) , xσ(6) , xσ(7) , xσ(8));

~b =


 xσ(1)

8∑
i=1

xσ(i)

, . . . ,
xσ(7)
8∑

i=1
xσ(i)

,
xσ(8)
8∑

i=1
xσ(i)

 if
8∑

i=1
xσ(i) 6= 0

(0, . . . , 0) otherwise.

a = 0 and 1
p = 0.30.
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CASE 2. Application to edge detection

~r = (xσ(1) , xσ(2) , xσ(3) , xσ(4) , xσ(5) , xσ(6) , xσ(7) , xσ(8));

~b =

(
1
8

(
1−

∣∣∣∣xσ(1) − median
i∈{1,...,8}

{xi}
∣∣∣∣) , . . .

. . . ,
1
8

(
1−

∣∣∣∣xσ(8) − median
i∈{1,...,8}

{xi}
∣∣∣∣)) ;

a = 0 and 1
p = 0.30.
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The algorithm

Algorithm 1 Algorithm to construct a feature image using ODM functions

Input: A normalized greyscale image IG and a parameter p > 0 to build an
ODM function G as in Corollary 8.

Output: A feature image IM .
1: for each pixel (x , y) of IG do
2: Calculate the 8 values obtained by applying the absolute value of the

difference between Ig(x , y) and its 8-neighbourhood;
3: Order the eight values of step 2 in a decreasing way;
4: Calculate the parameters a, ~r y ~b according to the vector obtained in

step 3.
5: Build the ODM function G as in Corollary 8 with the parameters obtained

in step 4.
6: Apply the ODM function G to the values obtained in step 3;
7: Assign as intensity of the pixel (x , y) of IM the value obtained in step 6.
8: end for
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Application to edge detection

Results obtained applying Algorithm 1 with different ODM
functions.

(a) Original (b) Case 1 (c) Case 2

Figure: Original image from BSDS [?] (100007) along with feature
images obtained after applying Algorithm 1 with Case 1 and case 2.

In Fig. 3 we show the results obtained by applying Algorithm 1
with the two ODM functions, Case 1 and Case 2, to an original
image, Fig. 3a.
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Comparison of best and worst appoaches

Original Image Case 1 Case 2 Canny FMMM

FMSS GSP GSM

Figure: Original images and the binary images obtained with ODM functions (Case
1, Case 2), Canny, Fuzzy Morphology (FMSS , FMMM) and Gravitational forces (GSP ,
GSM ), after executing steps (S1)− (S4)
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Motivation

(a) Original Image (b) Canny edge detector

(c) Human1 ground truth (d) Human2 ground truth (e) Human3 ground truth
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Comparison measures

The following measures of Precision (PREC), Recall (REC) and
F-measure (Fα) are calculated from the confusion matrix:

PREC =
TP

TP + FP ,

REC =
TP

TP + FN ,

Fα =
PREC · REC

α · PREC + (1− α) · REC .

We consider the commonly used α = 0.5; in that case, F0.5 is the
harmonic mean of PREC and REC .
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Edge Detection Method PREC REC F0.5

C1 0.579 0.794 0.653
C2 0.602 0.765 0.654
FMSS 0.572 0.719 0.615
C 0.687 0.618 0.631
GSP 0.649 0.649 0.650
GSM 0.661 0.665 0.641
SF 0.753 0.645 0.682

Table: Comparison of ODM functions approach with other edge detection
methods as Gravitational, Fuzzy Morphology, Structured Forest and Canny in
terms of PREC , REC and F0.5.
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Comparison of best and worst appoaches

Edge Detection Methods

C1 FMSS SF C GSP GSM

Best 44 14 86 6 29 21
Worst 17 86 23 39 16 19

C2 FMSS SF C GSP GSM

Best 50 16 86 6 27 15
Worst 9 89 27 39 20 16

Table: Comparison of best and worst approaches for 200 images of (BSDS500)
in terms of F0.5.
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Fusing feature images

Figure: Penalty description
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Consensus algorithm

Algorithm 2 Algorithm to construct a consensus feature image
Input: n feature images Im with m ∈ {1, . . . , n} .
Output: A consensus feature image O.

1: Calculate the value of the intensity of each pixel in the con-
sensus feature image O as the arithmetic mean of the pixels
intensities in the same position of the feature images Im with
m ∈ {1, . . . , n} .

Kempten 2020 Kempten, November 20, 2020 55 / 106



Some results

Edge Detection Method PREC REC F0.5
C1-C2 0.586 0.785 0.654
C1-Canny 0.661 0.682 0.652
C1-FMSS 0.582 0.784 0.651
C1-GSP 0.620 0.749 0.660
C1-GSM 0.625 0.731 0.654
C1-SF 0.715 0.724 0.705
C2-Canny 0.668 0.669 0.650
C2-FMSS 0.602 0.754 0.649
C2-GSP 0.628 0.731 0.657
C2-GSM 0.635 0.715 0.653
C2-SF 0.720 0.710 0.701
Canny-FMSS 0.675 0.650 0.644
Canny-GSP 0.677 0.666 0.651
Canny-GSM 0.674 0.648 0.641
Canny-SF 0.728 0.671 0.683
FMSS -GSP 0.624 0.734 0.655
FMSS -GSM 0.631 0.711 0.649
FMSS -SF 0.722 0.708 0.701
GSP -GSM 0.654 0.687 0.650
GSP -SF 0.722 0.688 0.687
GSM -SF 0.725 0.673 0.681
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Some comparisons: two methods

Edge Detection Methods
* FMSS C GSP GSM SF

3 7 3 7 3 7 3 7 3 7 3 7

C1-C2 42 11 16 88 6 39 31 20 18 16 87 26
C1-Canny 18 2 26 94 6 39 41 21 18 16 91 28
C1-FMSS 43 15 11 87 6 39 34 19 20 16 86 24
C1-GSP 43 6 22 93 7 39 18 18 19 16 91 28
C1-GSM 30 4 22 93 6 39 33 21 17 15 92 28
C1-SF 97 1 20 96 4 39 26 21 15 16 38 27
C2-Canny 15 1 28 95 6 39 42 21 18 16 91 28
C2-FMSS 38 11 14 88 6 39 37 19 17 15 88 28
C2-GSP 38 3 25 95 7 39 22 19 18 16 90 28
C2-GSM 26 2 24 94 6 39 36 21 15 16 93 28
C2-SF 96 1 20 96 4 39 29 21 15 16 36 27
Canny-FMSS 16 1 29 96 3 38 42 21 20 16 90 28
Canny-GSP 15 3 28 96 7 38 37 20 19 15 94 28
Canny-GSM 9 5 28 96 7 37 43 21 19 13 94 28
Canny-SF 52 2 27 95 5 39 36 20 16 16 64 28
FMSS -GSP 42 9 23 91 6 38 19 18 19 16 91 28
FMSS -GSM 24 4 22 93 6 39 39 21 17 15 92 28
FMSS -SF 98 1 20 96 4 39 28 21 16 16 34 27
GSP -GSM 18 6 26 95 7 38 37 19 17 14 95 28
GSP -SF 61 6 28 95 5 38 28 18 16 16 62 27
GSM -SF 48 3 29 95 5 39 36 20 15 16 67 27
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Edge detection using penalty functions

Figure: Original images (first row) and the binary images obtained with
penalty functions Case 1 (second row) and Case 2 (third row)
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A reference

Ordered directional monotonicity in the construction of edge detectors.
C. Marco-Detchart, H. Bustince, R. Mesiar, J. Lafuente, E. Barrenechea,
J.M. Pintor
Fuzzy Sets and Systems, in press
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Generalizing aggregation functions

Definition
An aggregation function is a function M : [0, 1]n → [0, 1] such
that:

1 M is increasing;
2 M(0, . . . , 0) = 0
3 M(1, . . . , 1) = 1.
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Pre-aggregation functions

Definition

A function F : [0, 1]n → [0, 1] is said to be an n-ary
pre-aggregation function if the following conditions hold:

(PA1) There exists a real vector ~r ∈ [0, 1]n (~r 6= ~0) such
that F is ~r -increasing.

(PA2) F satisfies the boundary conditions: F (0, . . . , 0) = 0
and F (1, . . . , 1) = 1.

If F is a pre-aggregation function with respect to a vector ~r we just
say that F is an ~r -pre-aggregation function.

Preaggregation Functions: Construction and an Application. Giancarlo
Lucca; José Antonio Sanz; Gracaliz Pereira Dimuro; Benjamín Bedregal;
Radko Mesiar; Anna Kolesárová; Humberto Bustince, IEEE Transactions
on Fuzzy Systems, 24(2), 260 - 272 (2016).
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Pre-aggregation functions

(i) The mode, Mod(x1, . . . , xn) is (1, . . . , 1)-increasing, and it is
a particular case of pre-aggregation function which is not an
aggregation function.

(ii) F (x , y) = x − (max{0, x − y})2 is, for instance,
(0, 1)-increasing, and it is an example of a pre-aggregation
function which is not an aggregation function.

(iii) Take λ ∈]0, 1[. The weighted Lehmer mean
Lλ : [0, 1]2 → [0, 1], given by

Lλ(x , y) =
λx2 + (1− λ)y2

λx + (1− λ)y

(with convention 0/0 = 0) is (1− λ, λ)-increasing, so it is a
pre-aggregation function.
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The key concept: An important remark

Theorem
If A : [0, 1]n → [0, 1] is an aggregation function, then A is also a
pre-aggregation function.

On some classes of directionally monotone functions. H. Bustince, R.
Mesiar, A. Kolesárová, G.P. Dimuro, J. Fernandez, I. Diaz, S. Montes,
Fuzzy Sets and Systems, in press.
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How do we build pre-aggregation functions

• The idea is to modify some well-known aggregation functions.

• We arrive at the method from a specific problem.
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A classification problem

• Classification problem:
P examples: X = {x1, ..., xp}
n attributes: A = {a1, ..., an}
M classes: C = {c1, ..., cM}

Classifier:

D : A → C

Noise
Overlapping

Border line
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A classification problem

Input
Fuzzification

interface

Inference

system
Output 

class

Rule BaseData Base

Knowledge Base

Fuzzy Rule-Based Classification System

Fuzzy Reasoning Method

Versicolor Virginica

Petal length

LongShort Medium
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R1: If Width is Short then Class = Versicolor
R2: If Length is Long then Class = Virginica
R3: If Width is Long then Class = Virginica
R4: If Length is Average and Width is Average then Class = Virginica
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A classification problem

Rj : If xp1 is Aj1 and . . . and xpn is Ajnthen Class = Cj with RWj

• Fuzzy Reasoning Method:
1 Matching degree:

µAj (xp) = T (µAj1 (xp1), . . . , µAjn (xpn))

2 Association degree:

bk
j = h(µAj (xp),RW k

j )

3 Association degree by classes:

Yk = f (bk
j , bk

j > 0)
4 Classification:

Cbest = arg max
k=1,··· ,M

(Yk)

• k = 1, …, M (n. classes).
• j = 1,…, L (n. rules).

Fuzzy Reasoning Method

Input
Fuzzification

interface

Inference

system
Output 

class

Rule BaseData Base

Knowledge Base

Fuzzy Rule-Based Classification System

O. Cordón, M. J. del Jesús, F. Herrera: A proposal on reasoning methods in fuzzy rule-based classification
systems. Int. J. Approx. Reason., 20:1 (1999) 21–45.
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A classification problem

• In step 3, usually the maximum is used...
• ... so we are ignoring information provided by almost every
rule!!!

• What happens if we try to take into account this information?
• Let’s use, for instance, Choquet integral...
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Experimental setting

1 27 datasets selected form the KEEL repository
2 5 folder cross validation method
3 Accuracy rate to measure the performance
4 Fuzzy classifier: FARC-HD

• Conjunction operator: product T-norm
• Rule weight: certainty factor
• 5 linguistic labels per variable
• Minimum support: 0.05
• Maximum confidence: 0.8
• Maximum tree depth: 3

5 Statistical study
1 Multiple comparisons: Friedman’s Aligned ranks + Holm
2 Pairwise comparisons: Wilcoxon

J. Alcala-Fdez, R. Alcala, F. Herrera, A fuzzy association rule-based classification model for
high-dimensional problems with genetic rule selection and lateral tuning, IEEE Transactions on Fuzzy
Systems 19 (5) (2011) 857–872.
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A first lucky idea

So we use the Choquet integral... with a “small” change:
The first idea

Cm(x) =
n∑

i=1

(
x(i) − x(i−1)

)
·m

(
A(i)

)
⇓ ⇓

CM
m (x) =

n∑
i=1

M
(
x(i) − x(i−1),m

(
A(i)

))
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A first lucky idea

Theorem

Let M : [0, 1]2 → [0, 1] be a function such that for all x , y ∈ [0, 1]
it satisfies M(x , y) ≤ x, M(x , 1) = x, M(0, y) = 0 and M is
(1,0)-increasing. Then, for any fuzzy measure m, CM

m is a
pre-aggregation function which is idempotent and averaging, i.e.,

min(x1, . . . , xn) ≤ CM
m (x1, . . . , xn) ≤ max(x1, . . . , xn).
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Experimental results

• Results of the 20 pre-aggregations considered

• Testing results
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times by using a different partition to test the system each time.
For each partition the output is computed as the mean of the
numbers of correctly classified examples divided by the total
number of examples for each partition, that is, the accuracy
rate. Then, we consider the average result of the five partitions
as the final classification rate of the algorithm. This procedure
is a standard for testing the performance of classifiers [39],
[40].

We use FARC-HD [10], which is short for Fuzzy Associ-
ation Rule-based Classification model for High Dimensional
problems, to accomplish the fuzzy rule learning process. We
have considered the following configuration: the product t-
norm as the conjunction operatorT ′, the Certainty Factor
as the rule weightRWj , 5 linguistic labels per variable,
0.05 for the minimum support, 0.8 as the threshold for the
confidence, the depth of the search trees is limited to 3 and
the parameter determining the number of fuzzy rules that cover
each example,kt, is set to 2. For the genetic process, we have
used populations composed of 50 individuals, 30 bits per gen
for the Gray codification (for incest prevention) and 20,000
as the maximum number of iterations. Finally, for the Dirac
fuzzy measure, the value of the variablei used to decide if
i ∈ A, for A ⊆ N = {0, . . . , n}, we adopt the median value,
given by,

i =

{

n+1
2 if n is odd

n
2 + 1 if n is even.

In order to give statistical support to the analysis of the
results we consider the usage of hypothesis validation tech-
niques [41], [42]. Specifically, we use non-parametric tests,
since the initial conditions that guarantee the reliability of the
parametric tests cannot be performed [43].

In fact, we use the aligned Friedman test [44] to detect
statistical differences among a group of results and to show
how good a method is with respect to the others. In this
method, the algorithm achieving the lowest average ranking
is the best one. Furthermore, we apply the post-hoc Holm’s
test [45] to study whether the best method rejects the equality
hypothesis with respect to its partners. The post-hoc procedure
allows us to know whether a hypothesis of comparison could
be rejected at a specified level of significanceα. Specifically,
we compute the adjustedp-value (APV) to take into account
that multiple tests are conducted. As a result, we can directly
compare the APV with the level of significanceα so as to be
able to reject the null hypothesis.

Finally, we also consider the usage of the Wilcoxon test [46]
in order to perform pair-wise comparisons.

B. Experimental Results

The summary of the results provided by all the different
configurations of the FRM, i.e. all the pre-aggregation func-
tions, are introduced in Table IV. Each column of this table
shows the results obtained using the fuzzy measure reported
in its top cell using the six t-norms, which are shown by
rows. The number in each cell is the average of the accuracy
rate obtained in the 27 datasets by the corresponding pre-
aggregation function. The best result for each fuzzy measure
is highlighted in bold-face. The number in brackets is the

number of datasets in which each t-norm has obtained the best
performance for each fuzzy measure (ties are excluded). The
detailed results obtained in each dataset are available in A.

TABLE IV: Averaged results obtained by the different pre-
aggregation functions considered in the study.

Uniform Dirac Wmean OWA PowerGA

Product 78.68 (7) 78.01 (3) 78.12 (4) 77.33 (4) 78.55 (5)
Minimum 78.85 (7) 77.81 (0) 78.75 (7) 78.33 (10) 79.00 (7)

Łukasiewicz 76.61 (1) 77.81 (1) 76.92 (0) 76.44 (1) 78.14 (0)
Drastic 76.66 (0) 77.81 (0) 76.66 (1) 76.66 (2) 76.66 (1)

Nilpotent 76.88 (1) 77.81 (0) 76.76 (3) 76.60 (1) 78.78 (5)
Hamacher 79.16 (8) 77.81 (1) 79.19 (10) 78.61 (7) 79.42 (7)

From these results we can observe two situations:

• The performance of the product, minimum and Hamacher
is in general clearly better than that of Łukasiewicz,
Drastic product and Nilpotent minimum.

• The performance of all the t-norms using the Dirac’s
measure is almost the same.

The reason implying the low performance of Łukasiewicz,
Drastic product and Nilpotent product is that after aggregating
a set of values, the obtained one is similar to that obtained
if we aggregated them using the minimum function (not the
pre-aggregation associated with the minimum), which usually
obtains poor results. The explanation is as follows: letx and
y be the result of the fuzzy measure and the subtraction of
the elements to be aggregated using the Choquet integral,
respectively.

• Łukasiewicz:x + y − 1 is lower than0 on half of its
domain. Therefore, most of the time we do not add
anything, which implies obtaining the minimum or a
value close to it.

• Drastic product: the value of the fuzzy measure is never
1 (except when we have all the elements) and it is very
difficult to have a difference between two values to be
aggregated equal to 1. Therefore, most of the time we
add0.

• Nilpotent minimum: in the same way than Łukasiewicz,
on half of the domainx + y is greater than1. Conse-
quently, we also add0 most of the times.

Regarding the behaviour of the Dirac’s measure, the similar
behaviour among all the t-norms is due to the fact that this
measure returns always either 1 or 0. Furthermore, it is known
that T (x(i) − x(i−1), 0) = 0 andT (x(i) − x(i−1), 1) = x(i) −
x(i−1), for any t-normT . Consequently, the selected t-norm
T does not have a great influence on the results of the pre-
aggregation functions.

Due to the aforementioned poor results obtained when
applying Łukasiewicz, Drastic product and Nilpotent mini-
mum, we focus the remainder of the analysis on the product,
minimum and Hamacher t-norms.

From the results on Table IV, we can observe that, with
the exception of the Dirac’s fuzzy measure, the results of the
Hamacher t-norm are better than those of the minimum t-norm,
which in turn are better than the ones of the product. This trend
is also present, in general, on the number of datasets in which
each of these t-norms obtain the best result.

• Statistical study

Aligned Friedman (APV Holm)
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In order to support the previous findings, we carry out a
statistical test to compare, for each fuzzy measure, the product,
minimum and Hamacher t-norms. To do so, we have used the
Aligned Friedman test as well as the Holm’s post-hoc test. The
results of these statistical techniques are reported in Table V,
where in each column we find the different fuzzy measures
whereas the three t-norms are shown in rows. The number
in each cell is the average rank computed with the aligned
Friedman test and the number in brackets is the APV computed
with the Holm’s test. The best t-norm for each fuzzy measure
is the one with the less rank, which stressed inbold-face,
whereas the APV is underlinedin case of statistical differences
in favour to the best t-norm.

TABLE V: Aligned Friedman and Holm tests to compare the
different pre-aggregation functions.

Uniform Dirac WMean OWA PowerGA

Product 42.94 (0.21) 38.13 51.09 (0.002) 53.91 (0.003) 50.78 (0.004)
Minimum 45.13 (0.21) 43.38 (0.771) 42.13 (0.054) 35.24 (0.828) 41.20 (0.112)
Hamacher 50.22 41.18 (0.771) 29.78 33.85 31.02

From the results in Table V, we can observe that the usage
of the Hamacher t-norm provides the best behaviour for all
the fuzzy measures, with the exception of the one defined
by Dirac due to the previous mentioned behaviour. In fact,
we find statistical differences with respect to the product
when using the additive (WMean), symmetric (OWA) and
Power GA fuzzy measures and a low APV when using the
uniform measure. Therefore, we can conclude that the usage
of the Hamacher t-norm allows us to enhance the results of
the product.

Furthermore, we also want to analyse if the minimum is also
appropriate when compared with the usage of the product.
To do so, we compare, for each fuzzy measure, the results
provided by the product versus the ones of the minimum. To
perform these comparisons, we have applied the Wilcoxon’s
test to conduct such pair-wise comparisons. The obtained
results are introduced in Table VI, where we can observe
that when using the additive (WMean), symmetric (OWA) and
Power GA fuzzy measures there is a trend in favour to the
minimum whereas in the two remainder fuzzy measures the
behaviour of these two t-norms is similar.

TABLE VI: Wilcoxon Test to compare the product (R+)
versus the minimum (R−).

Comparison R+ R− p-value

Uniform+Prod vs. Uniform+Min 195.5 182.5 0.925
Dirac+Prod vs. Dirac+Min 214 164 0.625
WMean+Prod vs. WMean+Min 135.5 242.5 0.200
OWA+Prod vs. OWA+Min 107.5 270.5 0.004
Power GA+Prod vs. PowerGA+Min 132 249 0.148

Finally, we want to study whether the results obtained by
the best pre-aggregation function are able to improve those
provided by the well-known FRM of the WR, that is, the usage
of the maximum to aggregate the information. According to
Table IV, we select the pre-aggregation function resultingof
the combination among the PowerGA fuzzy measure and
the Hamacher t-norm (PowerGA+Ham), since it provides

the best average result. The results provided by this pre-
aggregation function as well as those obtained with the WR are
reported in Table VII, where the best result for each datasetis
highlighted inbold-face. From these results, it can be observed
that the global behaviour of PowerGA+Ham is better than
that of the WR. This is due to the fact that PowerGA+Ham
provides the best result in 17 out of the 27 datasets considered
in the study. We also apply the Wilcoxon’s test to support
these findings, whose obtained results are shown in Table VIII.
According to the statistical results, we can confirm with a high
level of confidence that the usage of PowerGA+Ham is better
than that of the WR.

TABLE VII: Results in testing provided by CardGA+Ham
and WR.

Dataset WR PowerGA+Ham

App 84.89 82.99
Bal 82.08 82.72
Ban 84.30 85.96
Bnd 68.56 72.13
Bup 61.16 65.80
Cle 55.23 55.58
Eco 75.61 80.07
Gal 63.11 63.10
Hab 71.22 72.21
Hay 79.46 79.49
Iri 94.67 93.33

Led 69.80 68.60
Mag 79.60 79.76
New 94.42 95.35
Pag 94.52 94.34
Pho 82.01 83.83
Pim 75.38 73.44
Rin 90.00 88.79
Sah 67.31 70.77
Sat 80.40 80.40
Seg 92.99 93.33
Tit 78.87 78.87

Two 84.32 85.27
Veh 67.62 68.20
Win 94.36 96.63
Wis 96.49 96.78
Yea 56.54 56.53

Mean 78.70 79.42

TABLE VIII: Wilcoxon Test to compare the power measure
genetically adjusted method with the Hamacher t-norm (R+)
versus the classical FRM of the Winning Rule (R−).

Comparison R+ R− p-value

Power GA+Ham vs. WR 267.5 110.5 0.06

VII. C ONCLUSION

In this paper, based on the notion of an aggregation func-
tion, we have introduced the concept of a pre-aggregation
function. We have described three construction methods for
such functions. In particular, one of them derives from the
Choquet integral by using other t-norms in the place of the
product t-norm considered in the standard definition of the
Choquet integral. Furthermore, we have proposed to apply this
specific instance of pre-aggregation in the FRM of FRBCSs

Pre-aggregation Functions: Construction and an Application. G. Lucca, J. Sanz,
G. Dimuro, B. Bedregal, R. Mesiar, A. Kolesárová, H. Bustince, IEEE
Transactions on Fuzzy Systems 24 (2) 260–272 (2016).
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Experimental results

• Comparison of the best pre-aggregation versus the winning
rule FRM (maximum)

• Testing results
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In order to support the previous findings, we carry out a
statistical test to compare, for each fuzzy measure, the product,
minimum and Hamacher t-norms. To do so, we have used the
Aligned Friedman test as well as the Holm’s post-hoc test. The
results of these statistical techniques are reported in Table V,
where in each column we find the different fuzzy measures
whereas the three t-norms are shown in rows. The number
in each cell is the average rank computed with the aligned
Friedman test and the number in brackets is the APV computed
with the Holm’s test. The best t-norm for each fuzzy measure
is the one with the less rank, which stressed inbold-face,
whereas the APV is underlinedin case of statistical differences
in favour to the best t-norm.

TABLE V: Aligned Friedman and Holm tests to compare the
different pre-aggregation functions.

Uniform Dirac WMean OWA PowerGA

Product 42.94 (0.21) 38.13 51.09 (0.002) 53.91 (0.003) 50.78 (0.004)
Minimum 45.13 (0.21) 43.38 (0.771) 42.13 (0.054) 35.24 (0.828) 41.20 (0.112)
Hamacher 50.22 41.18 (0.771) 29.78 33.85 31.02

From the results in Table V, we can observe that the usage
of the Hamacher t-norm provides the best behaviour for all
the fuzzy measures, with the exception of the one defined
by Dirac due to the previous mentioned behaviour. In fact,
we find statistical differences with respect to the product
when using the additive (WMean), symmetric (OWA) and
Power GA fuzzy measures and a low APV when using the
uniform measure. Therefore, we can conclude that the usage
of the Hamacher t-norm allows us to enhance the results of
the product.

Furthermore, we also want to analyse if the minimum is also
appropriate when compared with the usage of the product.
To do so, we compare, for each fuzzy measure, the results
provided by the product versus the ones of the minimum. To
perform these comparisons, we have applied the Wilcoxon’s
test to conduct such pair-wise comparisons. The obtained
results are introduced in Table VI, where we can observe
that when using the additive (WMean), symmetric (OWA) and
Power GA fuzzy measures there is a trend in favour to the
minimum whereas in the two remainder fuzzy measures the
behaviour of these two t-norms is similar.

TABLE VI: Wilcoxon Test to compare the product (R+)
versus the minimum (R−).

Comparison R+ R− p-value

Uniform+Prod vs. Uniform+Min 195.5 182.5 0.925
Dirac+Prod vs. Dirac+Min 214 164 0.625
WMean+Prod vs. WMean+Min 135.5 242.5 0.200
OWA+Prod vs. OWA+Min 107.5 270.5 0.004
Power GA+Prod vs. PowerGA+Min 132 249 0.148

Finally, we want to study whether the results obtained by
the best pre-aggregation function are able to improve those
provided by the well-known FRM of the WR, that is, the usage
of the maximum to aggregate the information. According to
Table IV, we select the pre-aggregation function resultingof
the combination among the PowerGA fuzzy measure and
the Hamacher t-norm (PowerGA+Ham), since it provides

the best average result. The results provided by this pre-
aggregation function as well as those obtained with the WR are
reported in Table VII, where the best result for each datasetis
highlighted inbold-face. From these results, it can be observed
that the global behaviour of PowerGA+Ham is better than
that of the WR. This is due to the fact that PowerGA+Ham
provides the best result in 17 out of the 27 datasets considered
in the study. We also apply the Wilcoxon’s test to support
these findings, whose obtained results are shown in Table VIII.
According to the statistical results, we can confirm with a high
level of confidence that the usage of PowerGA+Ham is better
than that of the WR.

TABLE VII: Results in testing provided by CardGA+Ham
and WR.

Dataset WR PowerGA+Ham

App 84.89 82.99
Bal 82.08 82.72
Ban 84.30 85.96
Bnd 68.56 72.13
Bup 61.16 65.80
Cle 55.23 55.58
Eco 75.61 80.07
Gal 63.11 63.10
Hab 71.22 72.21
Hay 79.46 79.49
Iri 94.67 93.33

Led 69.80 68.60
Mag 79.60 79.76
New 94.42 95.35
Pag 94.52 94.34
Pho 82.01 83.83
Pim 75.38 73.44
Rin 90.00 88.79
Sah 67.31 70.77
Sat 80.40 80.40
Seg 92.99 93.33
Tit 78.87 78.87

Two 84.32 85.27
Veh 67.62 68.20
Win 94.36 96.63
Wis 96.49 96.78
Yea 56.54 56.53

Mean 78.70 79.42

TABLE VIII: Wilcoxon Test to compare the power measure
genetically adjusted method with the Hamacher t-norm (R+)
versus the classical FRM of the Winning Rule (R−).

Comparison R+ R− p-value

Power GA+Ham vs. WR 267.5 110.5 0.06

VII. C ONCLUSION

In this paper, based on the notion of an aggregation func-
tion, we have introduced the concept of a pre-aggregation
function. We have described three construction methods for
such functions. In particular, one of them derives from the
Choquet integral by using other t-norms in the place of the
product t-norm considered in the standard definition of the
Choquet integral. Furthermore, we have proposed to apply this
specific instance of pre-aggregation in the FRM of FRBCSs

• Statistical study: Wilcoxon
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In order to support the previous findings, we carry out a
statistical test to compare, for each fuzzy measure, the product,
minimum and Hamacher t-norms. To do so, we have used the
Aligned Friedman test as well as the Holm’s post-hoc test. The
results of these statistical techniques are reported in Table V,
where in each column we find the different fuzzy measures
whereas the three t-norms are shown in rows. The number
in each cell is the average rank computed with the aligned
Friedman test and the number in brackets is the APV computed
with the Holm’s test. The best t-norm for each fuzzy measure
is the one with the less rank, which stressed inbold-face,
whereas the APV is underlinedin case of statistical differences
in favour to the best t-norm.

TABLE V: Aligned Friedman and Holm tests to compare the
different pre-aggregation functions.

Uniform Dirac WMean OWA PowerGA

Product 42.94 (0.21) 38.13 51.09 (0.002) 53.91 (0.003) 50.78 (0.004)
Minimum 45.13 (0.21) 43.38 (0.771) 42.13 (0.054) 35.24 (0.828) 41.20 (0.112)
Hamacher 50.22 41.18 (0.771) 29.78 33.85 31.02

From the results in Table V, we can observe that the usage
of the Hamacher t-norm provides the best behaviour for all
the fuzzy measures, with the exception of the one defined
by Dirac due to the previous mentioned behaviour. In fact,
we find statistical differences with respect to the product
when using the additive (WMean), symmetric (OWA) and
Power GA fuzzy measures and a low APV when using the
uniform measure. Therefore, we can conclude that the usage
of the Hamacher t-norm allows us to enhance the results of
the product.

Furthermore, we also want to analyse if the minimum is also
appropriate when compared with the usage of the product.
To do so, we compare, for each fuzzy measure, the results
provided by the product versus the ones of the minimum. To
perform these comparisons, we have applied the Wilcoxon’s
test to conduct such pair-wise comparisons. The obtained
results are introduced in Table VI, where we can observe
that when using the additive (WMean), symmetric (OWA) and
Power GA fuzzy measures there is a trend in favour to the
minimum whereas in the two remainder fuzzy measures the
behaviour of these two t-norms is similar.

TABLE VI: Wilcoxon Test to compare the product (R+)
versus the minimum (R−).

Comparison R+ R− p-value

Uniform+Prod vs. Uniform+Min 195.5 182.5 0.925
Dirac+Prod vs. Dirac+Min 214 164 0.625
WMean+Prod vs. WMean+Min 135.5 242.5 0.200
OWA+Prod vs. OWA+Min 107.5 270.5 0.004
Power GA+Prod vs. PowerGA+Min 132 249 0.148

Finally, we want to study whether the results obtained by
the best pre-aggregation function are able to improve those
provided by the well-known FRM of the WR, that is, the usage
of the maximum to aggregate the information. According to
Table IV, we select the pre-aggregation function resultingof
the combination among the PowerGA fuzzy measure and
the Hamacher t-norm (PowerGA+Ham), since it provides

the best average result. The results provided by this pre-
aggregation function as well as those obtained with the WR are
reported in Table VII, where the best result for each datasetis
highlighted inbold-face. From these results, it can be observed
that the global behaviour of PowerGA+Ham is better than
that of the WR. This is due to the fact that PowerGA+Ham
provides the best result in 17 out of the 27 datasets considered
in the study. We also apply the Wilcoxon’s test to support
these findings, whose obtained results are shown in Table VIII.
According to the statistical results, we can confirm with a high
level of confidence that the usage of PowerGA+Ham is better
than that of the WR.

TABLE VII: Results in testing provided by CardGA+Ham
and WR.

Dataset WR PowerGA+Ham

App 84.89 82.99
Bal 82.08 82.72
Ban 84.30 85.96
Bnd 68.56 72.13
Bup 61.16 65.80
Cle 55.23 55.58
Eco 75.61 80.07
Gal 63.11 63.10
Hab 71.22 72.21
Hay 79.46 79.49
Iri 94.67 93.33

Led 69.80 68.60
Mag 79.60 79.76
New 94.42 95.35
Pag 94.52 94.34
Pho 82.01 83.83
Pim 75.38 73.44
Rin 90.00 88.79
Sah 67.31 70.77
Sat 80.40 80.40
Seg 92.99 93.33
Tit 78.87 78.87

Two 84.32 85.27
Veh 67.62 68.20
Win 94.36 96.63
Wis 96.49 96.78
Yea 56.54 56.53

Mean 78.70 79.42

TABLE VIII: Wilcoxon Test to compare the power measure
genetically adjusted method with the Hamacher t-norm (R+)
versus the classical FRM of the Winning Rule (R−).

Comparison R+ R− p-value

Power GA+Ham vs. WR 267.5 110.5 0.06

VII. C ONCLUSION

In this paper, based on the notion of an aggregation func-
tion, we have introduced the concept of a pre-aggregation
function. We have described three construction methods for
such functions. In particular, one of them derives from the
Choquet integral by using other t-norms in the place of the
product t-norm considered in the standard definition of the
Choquet integral. Furthermore, we have proposed to apply this
specific instance of pre-aggregation in the FRM of FRBCSs

Kempten 2020 Kempten, November 20, 2020 73 / 106



But...

If we take:

CM
m (x) =

n∑
i=1

M
(
x(i) − x(i−1),m

(
A(i)

))
,

we overcome the winning rule (the maximum).

We want more: let’s go for FURIA and FARC!!!

WHAT ELSE CAN WE DO??
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One step more

Cm(x) =
n∑

i=1

(
x(i) − x(i−1)

)
·m

(
A(i)

)
⇓ ⇓

CM
m (x) =

n∑
i=1

M
(
x(i) − x(i−1),m

(
A(i)

))

The second idea

Cm(x) =
n∑

i=1

(
x(i) ·m(A(i))− x(i−1) ·m

(
A(i)

))
⇓ ⇓

CF1,F2
m (x) =

n∑
i=1

F1(x(i),m(A(i)))− F2(x(i−1),m(A(i)))
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F1-F2based Choquet-like integrals

To get a value smaller than 1 we do:

C (F1,F2)
m (x) = min

{
1,

n∑
i=1

F1
(
x(i),m

(
A(i)

))
− F2

(
x(i−1),m

(
A(i)

))}
,

Conditions for F1 and F2?
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F1-F2based Choquet-like integrals

Proposition *

Let F1,F2 : [0, 1]2 → [0, 1] be two bivariate functions such that, for
every x , y ∈ [0, 1], it holds that:

1 F1 is (1, 0)-increasing;
2 F1(0, x) = F2(0, x);
3 F1(0, 1) = F2(0, 1) = 0;
4 F1(1, 1) = 1;
5 F1(x , y) ≥ F2(x , y).

Then, for any fuzzy measure m, the function C (F1,F2)
m is

well-defined and satisfies:
0 ≤ C (F1,F2)

m (x) ≤ 1
for every x ∈ [0, 1]n.

Kempten 2020 Kempten, November 20, 2020 77 / 106



Does it work?

Proposition
If we take:

• F1(x , y) =
√xy

• F2(x , y) = max(x + y − 1, 0),
then

C (F1,F2)
m (x) = min

{
1,

n∑
i=1

F1
(
x(i),m

(
A(i)

))
− F2

(
x(i−1),m

(
A(i)

))}

is a non-averaging pre-aggregation function.
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Results Table 1: Results achieved in testing considering the F1F2 approach

Dataset FURIA AC ProbSum GM LK
appendicitis 87.71 83.03 85.84 84.89
balance 83.68 85.92 87.20 89.76
banana 88.57 85.30 84.85 85.23
bands 69.40 68.28 68.82 70.49
bupa 70.14 67.25 61.74 66.67
cleveland 56.57 56.21 59.25 58.57
contraceptive 54.17 53.16 52.21 53.50
ecoli 80.06 82.15 80.95 84.53
glass 72.91 65.44 64.04 64.99
haberman 72.55 73.18 69.26 73.18
hayes-roth 81.00 77.95 77.95 79.43
ion 89.75 88.90 88.32 89.75
iris 94.00 94.00 95.33 94.67
led7digit 71.80 69.60 69.20 69.60
magic 80.65 80.76 80.39 80.18
newthyroid 94.88 94.88 94.42 96.28
pageblocks 95.25 95.07 94.52 95.98
penbased 92.45 92.55 93.27 92.64
phoneme 85.90 81.70 82.51 82.44
pima 76.17 74.74 75.91 75.26
ring 85.54 90.95 90.00 90.41
saheart 70.33 68.39 69.69 70.56
satimage 82.27 79.47 80.40 79.47
segment 97.32 93.12 92.94 92.86
shuttle 99.68 95.59 94.85 97.33
sonar 78.90 78.36 82.24 83.23
spectfheart 77.88 77.88 77.90 80.12
titanic 78.51 78.87 78.87 78.87
twonorm 88.11 90.95 90.00 91.76
vehicle 70.21 68.56 68.09 68.67
wine 93.78 96.03 94.92 96.03
wisconsin 96.63 96.63 97.22 96.34
yeast 58.22 58.96 59.03 58.96
Mean 81.06 80.12 80.07 80.99

1
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Generalizations of the Choquet integral

Improving the performance of fuzzy rule-based classification systems based
on a non-averaging generalization of CC-integrals named CF1F2-integrals,
Giancarlo Lucca; Gracaliz Pereira Dimuro; Javier Fernandez; Humberto
Bustince; Benjamín Bedregal; José Antonio Sanz. IEEE Transactions on
Fuzzy Systems,27, 124–134 (2018).

The state-of-art of the generalizations of the Choquet integral: From
aggregation and pre-aggregation to ordered directionally monotone
functions, Graa�liz Pereira Dimuro, Javier Fernandez, Benjamin Bedregal,
Radko Mesiar, Jose Antonio Sanz, Giancarlo Lucca, Humberto Bustince,
Information Fusion, 57, 27–43, (2020).

A generalization of the Choquet integral defined in terms of the Möbius
transform, Javier Fernandez, Humberto Bustince, Lubomira Horánska,
Radko Mesiar, Andrea Stupnánová. IEEE Transactions on Fuzzy Systems,
in press.
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The case of the computational brain

We have a set of possible functions to fuse data, which works very
well in some specific problems

Can we find another types of problems where it can be useful?
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The case of the computational brain

Consider the problem of determining whether a subject is thinking
of moving the left or the right hand.
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The case of the computational brain

Consider the problem of determining whether a subject is thinking
of moving the left or the right hand.

Classification problem with two classes

Not appropriate for deep learning!
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How can we do it
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How can we do it
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How can we do it
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Preprocessing

• 32 EEG signals are collected.
• The signals are preprocessed with FFT to get features in five
bands.

• Common spatial pattern is applied to get well-separated
sub-components.
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Ensembles

We use three classifiers:
• Lineal discriminant analysis.
• Quadratic discriminant analysis.
• kNN (with k = 9)
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The algorithm
STRUCTURE OF THE ALGORITHM:

Multimodal Fuzzy Fusion for Enhancing the Motor-Imagery-based Brain
Computer Interface, Li-Wei Ko, Yi-Chen Lu, Humberto Bustince, Yu-Cheng
Chang, Yang Chang, Javier Fernandez, Yu-Kai Wang, Jose Antonio Sanz,
Gracaliz Pereira Dimuro, Chin-Teng Lin, IEEE Computational Intelligence
Magazine,14 (1), 96–106 (2019)
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The algorithm

STRUCTURE OF THE ALGORITHM:

We make two steps:

1 Fuse the results for each band and each classifier.
2 Fuse the global result of each classifier.
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Pre-aggregations vs. BCI

We use aggregation and pre-aggregation functions to fuse the
results of each classifier

• M-C1: Choquet.
• M-C2: CF integral with F the Hamacher t-norm:

F (x , y) =
{
0 if x = y = 0

xy
x+y−xy otherwise.

• M-C3: CF1F2 with F1 = F2 = min.
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Comparison of the individual classifiers
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Comparison of the individual classifiers

What else can we do?
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Sugeno-based construction method

Discrete Sugeno integral Sm : [0, 1]n → [0, 1] can be written as

Sm(x) =
n∨

i=1
min

{
x(i),m

(
A(i)

)}
.

What happens if we replace the minimum by another aggregation
function?

SM
m (x) =

n∨
i=1

M
(
x(i),m

(
A(i)

))
. (3)
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Sugeno-based construction method

Proposition

Let M : [0, 1]2 → [0, 1] be a function increasing in the first variable
and let for each y ∈ [0, 1], M(0, y) = 0 and M(1, 1) = 1. Then SM

m

defined in (3) is a pre-aggregation function for any fuzzy measure
m.
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Pre-aggregations vs. BCI

We use aggregation and pre-aggregation functions to fuse the
results of each classifier

• M-S1: Sugeno.
• M-S2: SM integral with M the Hamacher t-norm:

F (x , y) =
{
0 if x = y = 0

xy
x+y−xy otherwise.

• M-S3: SM integral with M given by:

M(x , y) = x |2y − 1|
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Computational brain
Comparison of results:
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Computational brain

Comparison of results:
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Computational brain

Comparison of results:

Multimodal Fuzzy Fusion for Enhancing the Motor-Imagery-based Brain
Computer Interface, Li-Wei Ko, Yi-Chen Lu, Humberto Bustince, Yu-Cheng
Chang, Yang Chang, Javier Fernandez, Yu-Kai Wang, Jose Antonio Sanz,
Gracaliz Pereira Dimuro, Chin-Teng Lin, IEEE Computational Intelligence
Magazine,14 (1), 96–106 (2019)
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And for a harder problem?
• Benchmark with 4 classes: left hand, right hand, foot, tongue.
• 288 trials, 72 per class
• 22 channels per signal.
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One video
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Conclusions

• We have explained possible ways of generalizing aggregation
functions.

• We have discussed in particular how these functions can be
obtained in terms of Choquet and Sugeno integrals.

• We have seen the applicability of our results in classification
problems, in particular in the computational brain.
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Conclusions: The computational brain

• Data fusion based on Choquet and Sugeno integrals improves
the results.

• Only with the band α, accuracy is higher than 80
• This improves applicability for patients with communication
difficulties.
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Thanks!!!

Many thanks!!!!
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